zoukankan      html  css  js  c++  java
  • 清北学堂培训2019.4.6

    Day 3(还是我们熟悉的钟皓曦大佬)

    讲了神奇的组合数问题(据说各个网站的组合数问题都是钟皓曦出的,所以他说都是好题

    组合数需要用到下面两个原理和两个神奇的东西

    加法原理:具有性质A的事件有m个,

    具有性质B的事件有n个,则具有性质A或者性质B的事件有m+n个

    乘法原理:具有性质A的事件有m个,

    具有性质B的事件有n个,则具有性质A以及性质B的事件有m*n个

    组合:从n个元素中选取r个元素,

    当不计顺序时,其方案数为C(n,r)=n!/【r!*(n-r)!】

    排列:从n个元素中选取r个元素,

    当考虑顺序时,其方案数为P(n,r)=n!/(n-r)!

     这里的组合数满足一些性质:

    1. n个不同元素,从中选r个,但是选择的元素不能相邻,其方案数为C(n-r+1,r)(至于这里的证明我也十分的迷茫,就先不证了,大家先凑合着看);

    2.有n个不同元素,从中选r个,但是每个可以选多次,则其方案数为C(n+r-1,r)

    3.其他的性质:

    • C(n+m,n)=C(n+m,m)
    • C(n,m)=C(n-1,m-1)+C(n-1,m)
    • C(n+r+1,r)=C(n+r,r)+C(n+r-1,r-1)+C(n+r-2,r-2)+....+C(n,0)
    • C(n,l)C(l,r)=C(n,r)C(n-r,l-r)
    • C(n,0)+C(n,1)+.....+C(n,n)=2n
    • C(n,0)-C(n,1)+C(n,2)-...=0
    • C(r,r)+C(r+1,r)+...+C(n,r)=C(n+1,r+1)

     没错,就这么多性质,且看且珍惜QAQ

    容斥原理

    第二类斯特林数

    n个有区别的球放到m个相同的盒子中要求没有空盒的方案数

    记为S(n,m)

    (↗这是一些神奇的栗子例子)

    这貌似是通式)

    卡特兰数

    将凸n边形划分为三角形的方案数

    记为C(n)

    则C(n)=C(2)C(n)+C(3)C(n-1)+···+C(n)C(2)

    C(n+1)=1/n C(2n-2,n-1)(这个C是组合数)

    (↗这貌似是通式)

    剩下的便是一些例题,以后会再整理

  • 相关阅读:
    asp.net mvc上传头像加剪裁功能
    CSS基础部分总结
    Web前端之初学CSS
    JavaScript中的new操作符的原理解析
    JS常用数组API汇总
    【NOIP2020提高B组模拟11.26】卡常题
    【NOIP2020提高B组模拟11.26】逗气
    CSP-J/S总结
    计数题
    浅谈线段树——基础篇
  • 原文地址:https://www.cnblogs.com/gongcheng456/p/10662840.html
Copyright © 2011-2022 走看看