zoukankan      html  css  js  c++  java
  • HDUOJ1086You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6340    Accepted Submission(s): 3064


    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point.
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
    For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0
     
    Sample Output
    1 3
     
    Author
    lcy
     线段是否相交的判断,采用的石墨板,..
    代码:
     1 #include<stdio.h>
     2 #include<math.h>
     3 const double eps=1e-10 ;
     4 typedef struct
     5 {
     6     double x,y;
     7 }point;
     8 
     9 double min(double a, double b)
    10 {
    11     return a<b?a:b;
    12 }
    13 double max(double a,double b)
    14 {
    15     return a>b?a:b;
    16 }
    17 //判断线段是否有焦点
    18 bool inter(point a ,point b, point c ,point d)
    19 {
    20     if(min(a.x,b.x)>max(c.x,d.x)||min(a.y,b.y)>max(c.y,d.y)||
    21       min(c.x,d.x)>max(a.x,b.x)||min(c.y,d.y)>max(a.y,b.y))
    22       return 0;
    23     double h,i,j,k;
    24     h=(b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
    25     i=(b.x-a.x)*(d.y-a.y)-(b.y-a.y)*(d.x-a.x);
    26     j=(d.x-c.x)*(a.y-c.y)-(d.y-c.y)*(a.x-c.x);
    27     k=(d.x-c.x)*(b.y-c.y)-(d.y-c.y)*(b.x-c.x);
    28     return h*i<=eps&&j*k<=eps;
    29 };
    30 point st[102],en[102];
    31 int main()
    32 {
    33     int n,j,i,cnt=0;
    34     while(scanf("%d",&n),n)
    35     {
    36         cnt=0;
    37         for( i=0 ; i<n ; i++ )
    38          scanf("%lf%lf%lf%lf",&st[i].x,&st[i].y,&en[i].x,&en[i].y);
    39 
    40         for( i=0 ; i<n ; i++ )
    41         {
    42             for(j=i+1 ; j<n ;j++ )
    43             {
    44                 if(inter(st[i],en[i],st[j],en[j]))
    45                     cnt++;
    46             }
    47         }
    48         printf("%d
    ",cnt);
    49     }
    50     return 0;
    51 }
    View Code
     
  • 相关阅读:
    【Linux 日常】设置动态链接库目录
    某站视频python抓取: m3u8转mp4
    GDB 主要调试命令
    算法【查找一】
    算法【排序四】
    算法【排序三】
    Vim常用命令整理
    【OpenCV】贝叶斯之肤色分割模型
    算法【排序二】
    算法【排序一】
  • 原文地址:https://www.cnblogs.com/gongxijun/p/3508245.html
Copyright © 2011-2022 走看看