zoukankan      html  css  js  c++  java
  • hdu 4405Aeroplane chess(概率DP)

    Aeroplane chess

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1581    Accepted Submission(s): 1082

    Problem Description
    Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.
    There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.
    Please help Hzz calculate the expected dice throwing times to finish the game.
     
    Input
    There are multiple test cases. Each test case contains several lines. The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000). Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).   The input end with N=0, M=0.
     
    Output
    For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.
     
    Sample Input
    2 0 8 3 2 4 4 5 7 8 0 0
     
    Sample Output
    1.1667 2.3441
     
    Source
     
    有一个长条形棋盘,每一次可以跳1,2,3,4,5,6中的一种的距离,且每一跳的概率相等1/6;且在某一个点出有一个航班可以帮助他不需要跳直接可以达到y处
    问到n平均需要跳多少次。
     
        dp【n】=0;因为在哪里不需要再跳,这个已知,所以可以倒退
        dp[i]=sum{1+dp[n+j]}(1<=j<=6)
     代码:
      
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<stack>
     4 #define maxn 100008
     5 using namespace std;
     6 double  dp[maxn];
     7 stack<int> path[maxn];
     8 int pa[maxn];
     9 int main()
    10 {
    11   int n,m,a,b;
    12   while(scanf("%d%d",&n,&m)!=EOF&&n+m)
    13   {
    14     memset(pa,0,sizeof(int)*(n+2));
    15     memset(dp,0,sizeof(double)*(n+8));
    16       while(m--)
    17     {
    18       scanf("%d%d",&a,&b);
    19       path[b].push(a);
    20       pa[a]=b;
    21     }
    22     while(--n>=0)
    23     {
    24       while(!path[n+1].empty())
    25      {
    26          dp[path[n+1].top()]=dp[n+1];
    27          path[n+1].pop();
    28      }
    29       if(pa[n]==0)
    30          dp[n]=1.0+(dp[n+1]+dp[n+2]+dp[n+3]+dp[n+4]+dp[n+5]+dp[n+6])/6.0;
    31     }
    32    printf("%.4lf
    ",dp[0]);
    33   }
    34   return 0;
    35 }
    View Code
     
  • 相关阅读:
    java虚拟机学习-JVM调优总结-基本垃圾回收算法(7)
    学习笔记-人脸识别第三讲
    小波变换基础理论
    小波变换图像分解
    图像的纹理区域分类
    matlab中图片数据类型转换uint8与double
    八板体-器乐曲
    【歌词】金蛇狂舞-许笑薇-童声
    【歌词】金蛇狂舞-龙飘飘
    NLM算法
  • 原文地址:https://www.cnblogs.com/gongxijun/p/4035682.html
Copyright © 2011-2022 走看看