1.np.logspace(start,stop,num): 函数表示的意思是;在(start,stop)间生成等比数列num个
eg:
import numpy as np print np.logspace(1,4,4)
结果为: [ 10. 100. 1000. 10000.]
2. np.fromstring('admin',dtype=np.int8):函数的作用是将字符串装换成对应的ascii值
import numpy as np print np.fromstring('admin',dtype= np.int8)
结果为: [ 97 100 109 105 110]
3.自定义自己的数据类型:
import numpy as np
student = np.dtype({'names': ['name', 'age'], 'formats': ['S32', 'i']})
print student
xiaoming = np.array([('gong', 12)], dtype=student)
print xiaoming
print xiaoming[0]['name']
print xiaoming[0]['age']
结果:
[('name', 'S32'), ('age', '<i4')]
[('gong', 12)]
gong
12
4.以等差的形式生成一维数组:
import numpy as np print np.linspace(0,4,6)
结果:[ 0. 0.8 1.6 2.4 3.2 4. ]
5.使用frompyfun进行加速科学计算
import numpy as np def func(a, b): return a + b; x = np.linspace(1, 4, 6) fx = np.frompyfunc(lambda x: func(x, 0.6), 1, 1) print fx(x)
结果:
[1.6 2.2 2.8000000000000003 3.4 4.0 4.6]
6. np.dot([1,2],[2,3])为矩阵的内积(矩阵相乘)计算
结果:8
7.np.inner(a,b)为列向量之和
8.np.outer(a,b)为行向量对应相乘.