Problem Description
Let S = s1 s2 … s2n be a well-formed string of parentheses. S can be encoded in two different ways:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
- By an integer sequence P = p1 p2 … pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
- By an integer sequence W = w1 w2 … wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence)
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input file contains a single integer t (1 t 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 n 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
题解:序列的含义如下:
P-sequence 4 5 6666 //某个左括号左边有几个左括号
W-sequence 1 1 1456 //某个右括号与匹配的左括号间有几个左括号
除了公式解答,也可以模拟。
#include <cstdio> #include <iostream> #include <string> #include <cstring> #include <stack> #include <queue> #include <algorithm> #include <cmath> #include <map> using namespace std; //#define LOCAL /* (((()()()))) P-sequence 4 5 6666 //左边有几个左括号 W-sequence 1 1 1456 //匹配的左括号间有几个左括号 */ stack<int> s; int main() { #ifdef LOCAL freopen("in.txt", "r", stdin); #endif // LOCAL int t,n,k,m; int i,j; cin>>t; bool flag[1000]= {false}; for(i=0; i<t; i++) { cin>>n; memset(flag,0,1000); k=0; for(j=0; j<n; j++) { cin>>m; flag[k+m]=true;//k为右括号的数量(不含当前) k++; } for(j=0; j<k+m-1; j++) { if(!flag[j])s.push(j); else { cout<<(j-s.top()+1)/2<<" ";//(右括号与相应的左括号序号差+1)/2,即为中间的左括号数 s.pop(); } } cout<<(j-s.top()+1)/2<<endl; s.pop(); } return 0; }