zoukankan      html  css  js  c++  java
  • ### Caffe

    Caffe学习。

    #@author:       gr
    #@date:         2015-08-30
    #@email:        forgerui@gmail.com   
    

    1. Install

    详细可以见官方文档博客1博客2

    1.1 Prerequisites

    • CUDA is required for GPU mode.
      library version 7.0 and the latest driver version are recommended, but 6.* is fine too
      5.5, and 5.0 are compatible but considered legacy
    • BLAS via ATLAS, MKL, or OpenBLAS.
    • Boost >= 1.55
    • OpenCV >= 2.4 including 3.0
    • protobuf, glog, gflags
    • IO libraries hdf5, leveldb, snappy, lmdb

    Caffe requires BLAS as the backend of its matrix and vector computations. There are several implementations of this library. The choice is yours:

    • ATLAS: free, open source, and so the default for Caffe.
    • Intel MKL: commercial and optimized for Intel CPUs, with a free trial and student licenses.
      Install MKL.
      Set BLAS := mkl in Makefile.config
    • OpenBLAS: free and open source; this optimized and parallel BLAS could require more effort to install, although it might offer a speedup.
      Install OpenBLAS
      Set BLAS := open in Makefile.config

    我们这里使用atlas。

    1.2 Compilation

    1. 拷贝配置文件

       cp Makefile.config.example Makefile.config
      
    2. 在Makefile.config文件中第73行LIBRARY_DIRS加上atlas库所在的位置,我的在/usr/lib64/atlas/,修改后:

       LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib64/atlas/  
      
    3. Makefile文件中在236行将boost_thread修改为boost_thread-mt,修改后:

       LIBRARIES += boost_thread-mt stdc++ 
      
    4. 编译

       make all -j 20            #多核编译,根据机子情况选定
      
    5. 编译matlab

      修改Makefile.config,MATLAB_DIR中加入matlab在机器中的位置:

       MATLAB_DIR := /usr/local/MATLAB/MATLAB_Production_Server/R2013a
      

      编译:

       make matcaffe -j 20
      
    6. 编译python

      修改Makefile.config,将PYTHON_INCLUDE, PYTHON_LIB修改为你机子正确的配置。

       PYTHON_INCLUDE := /usr/local/include/python2.7 
       /usr/lib/python2.7/site-packages/numpy/core/include/numpy/
       
       PYTHON_LIB := /usr/local/lib 
      

      编译:

       make pycaffe -j 20
      

      注意:如果遇到如下问题,

       /usr/bin/ld: /usr/local/lib/libpython2.7.a(abstract.o): relocation R_X86_64_32 against `a local symbol' can not be used when making a shared object; recompile with -fPIC
       /usr/local/lib/libpython2.7.a: could not read symbols: Bad value
       collect2: ld returned 1 exit status
      

      可以下载python,加上--enable-shared-fPIC选项重新编译安装,命令如下:

       ./configure --prefix=/usr/local/  --enable-shared CFLAGS=-fPIC  
       make  
       make install  
      

    2. Usage

    2.1 caffe中的例子

    可以参见博客

    2.1.1 mnist

    mnist的网络框架在文件examples/mnist/lenet.prototxt中。分别运行如下命令,即可实现mnist:

    sh data/mnist/get_mnist.sh
    sh examples/mnist/create_mnist.sh
    sh examples/mnist/train_lenet.sh
    

    最后运行的结果,可以看到accuracy = 0.9907

    I0830 21:56:59.506049 12371 solver.cpp:326] Iteration 10000, loss = 0.00290909
    I0830 21:56:59.506080 12371 solver.cpp:346] Iteration 10000, Testing net (#0)
    I0830 21:57:00.983238 12371 solver.cpp:414]     Test net output #0: accuracy = 0.9907
    I0830 21:57:00.983290 12371 solver.cpp:414]     Test net output #1: loss = 0.0304467 (* 1 = 0.0304467 loss)
    I0830 21:57:00.983304 12371 solver.cpp:331] Optimization Done.
    I0830 21:57:00.983314 12371 caffe.cpp:214] Optimization Done.
    
    2.1.2 cifair
    sh data/cifar10/get_cifar10.sh
    sh examples/cifar10/create_cifar10.sh
    sh examples/cifar10/train_quick.sh
    

    2.2 caffe 框架学习

    2.2.1 框架

    caffe的框架如下:

    caffe framework

    1. 预处理图像的leveldb构建
      输入:一批图像和label (2和3)
      输出:leveldb (4)
      指令里包含如下信息:
      conver_imageset (构建leveldb的可运行程序)
      train/ (此目录放处理的jpg或者其他格式的图像)
      label.txt (图像文件名及其label信息)
      输出的leveldb文件夹的名字
      CPU/GPU (指定是在cpu上还是在gpu上运行code)

    2. CNN网络配置文件
      Imagenet_solver.prototxt (包含全局参数的配置的文件)
      Imagenet.prototxt (包含训练网络的配置的文件)
      Imagenet_val.prototxt (包含测试网络的配置文件)

    2.2.2 Caffe层次

    **Blob: **基础的数据结构,是用来保存学习到的参数以及网络传输过程中产生数据的类。
    **Layer: **是网络的基本单元,由此派生出了各种层类。修改这部分的人主要是研究特征表达方向的。
    **Net: **是网络的搭建,将Layer所派生出层类组合成网络。
    **Solver: **是Net的求解,修改这部分人主要会是研究DL求解方向的。

    2.3 RCNN

    Training your own R-CNN detector on PASCAL VOC

    !!! tvmonitor : 0.6483 0.6614
    ~~~~~~~~~~~~~~~~~~~~
    Results:
        0.6428
        0.6963
        0.5016
        0.4191
        0.3191
        0.6251
        0.7087
        0.6036
        0.3266
        0.5852
        0.4627
        0.5616
        0.6037
        0.6684
        0.5414
        0.3157
        0.5285
        0.4889
        0.5772
        0.6483
    
        0.5412
    
    ~~~~~~~~~~~~~~~~~~~~
    
    test_results = 
    
    1x20 struct array with fields:
    
        recall
        prec
        ap
        ap_auc
    

    Reference

    1. http://caffe.berkeleyvision.org/installation.html
    2. http://www.rthpc.com/plus/view.php?aid=351
    3. http://www.cnblogs.com/platero/p/3993877.html
    4. http://www.csdn.net/article/2015-01-22/2823663

  • 相关阅读:
    错误、异常与自定义异常
    关于使用第三方库、代码复用的一些思考
    [Scheme]一个Scheme的Metacircular evaluator
    [Scheme]Understanding the Yin-Yang Puzzle
    [Lua]50行代码的解释器,用来演示lambda calculus
    将jar包安装到本地仓库
    PowerDesigner安装教程(含下载+汉化+破解)
    Jmeter如何录制APP客户端脚本
    jdk1.8 stream 求和
    VMware的快照和克隆总结
  • 原文地址:https://www.cnblogs.com/gr-nick/p/4924223.html
Copyright © 2011-2022 走看看