zoukankan      html  css  js  c++  java
  • 关于中国剩余定理

    中国剩余定理

    一、中国剩余定理

    对于k个两两互质的正整数:(m_1,m_2,...,m_k),任意k个正整数:(a_1, a_2, ..., a_k),一个未知数x,如果满足一下一次同余式组:

    [left{ egin{aligned} x &≡ a_1(mod m_1) \ x &≡ a_2(mod m_2) \ &......\ x &= a_k(mod m_k) end{aligned} ight. ]

    定义:

    (M = m_1*m_2*...*m_k)

    (M_i = M/m_i)

    (M_i^{-1})表示(mod m_i)意义下的逆元(即:(M_i * M_i^{-1} ≡ 1(mod m_i))

    则其解为:

    (x = a_1*M_1*M_1^{-1} + a_1*M_1*M_1^{-1} + ... + a_k*M_k*M_k^{-1})

    代码:

    #include <iostream>
    
    using namespace std;
    
    typedef long long LL;
    
    const int N = 100;
    
    LL exgcd(LL a, LL b, LL &x, LL &y)
    {
        if(!b)
        {
            x = 1, y = 0;
            return a;
        }
        
        LL d = exgcd(b, a % b, y, x);
        y -= (a / b) * x;
        return d;
    }
    
    LL CRT(LL a[], LL m[], int n)
    {
    	LL M = 1;
    	for(int i = 0; i < n; i++) M *= m[i];
    	
    	LL res = 0;
    	for(int i = 0; i < n; i++)
    	{
    		LL x, y;
    		LL M_i = M / m[i]; 
    		LL d = exgcd(M_i, m[i], x, y);
    		res = (res + a[i] * M_i * x) % M;
    	}
    	
    	return (res + M) % M;
    }
      
    int main()
    {
    	LL a[N], m[N];
    	
        int n;
        cin >> n;
        
        for(int i = 0; i < n; i++)
        	scanf("%lld%lld", &a[i], &m[i]);
        
        cout << CRT(a, m, n) << endl;
        
        return 0;
    }
    

    二、利用拓展欧几里得求解一次同余式组

    (m_i)不满足两两互质时可以利用拓展欧几里得求解

    推导过程:

    对于两个同余式:

    (left{ egin{aligned} x &≡ m_1(mod a_1) \ x &≡ m_2(mod a_2) \ end{aligned} ight.) 可得出:(left{ egin{aligned} x &= k_1 * a_1 + m_1 \ x &= k_2 * a_2 + m_2 \ end{aligned} ight.) 进一步可得出:(k_1 * a_1 - k_2 * a_2 = m_2 - m_1)

    要使该方程有解则:(gcd(a_1, a_2) | m_2 - m_1)

    (d = gcd(a_1, a_2)),由拓展欧几里得定理可以求出方程的一个解为:(k_1 = k * (m_2 - m_1) / d)(其中,k为(k_1 * a_1 - k_2 * a_2 = gcd(k_1, k_2))的一个解),然后将其化为最小正整数解。

    注:由于拓展欧几里得的通解为:(K = k + s * a_2/d(s为任意整数)),令(t = a_2/d),则最小正整数解为:((k\%t + t)\%t)

    将方程中的(k_1、k_2)换元为:(left{ egin{aligned} k_1 &= k_1 + k * a_2 / d \ k_2 &= k_2 + k * a_1 / d\ end{aligned} ight.),带入原式可以得出:(x = (k_1 + k * a_2/d) * a_1 + m_1),展开得:(x = a_1*k_1 + m_1 + k*lcm(a_1, a_2))

    (a = lcm(a_1, a_2), m = a_1*k_1 + m_1)则:(x = k * a + m)

    由此,两个同余式即化为了一个同余式,反复通过此方法,即可把n个同余式合并成1个,最终求出解。

    代码:

    #include <iostream>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long LL;
    
    LL exgcd(LL a, LL b, LL &x, LL &y)
    {
        if(!b)
        {
            x = 1, y = 0;
            return a;
        }
        
        LL d = exgcd(b, a % b, y, x);
        y -= (a / b) * x;
        return d;
    }
    
    int main()
    {
        int n;
        cin >> n;
        
        bool has_answer = true;
        //作为第一组数据,同时存储每次合并后的结果
        LL a1, m1;
        cin >> a1 >> m1;
        
        for(int i = 0; i < n-1; i++)
        {
            LL a2, m2;
            scanf("%lld%lld", &a2, &m2);
            
            LL k1, k2;
            LL d = exgcd(a1, a2, k1, k2);
            
            if((m2 - m1) % d)
            {
                has_answer = false;
                break;
            }
            //求出一个解
            k1 *= (m2 - m1) / d;
            //求出最小整数解
            LL t = a2 / d;
            k1 = (k1 % t + t) % t;
            //更新合并后的a1、m1
            m1 = a1 * k1 + m1;
            a1 = abs(a1 / d * a2);
        }
        //最小整数解
        if(has_answer) cout << (m1 % a1 + a1) % a1 << endl;
        else puts("-1");
        
        return 0;
    }
    

    三、应用

    广场上有一队士兵,如果排成10 列纵队,最后剩下a 个人((0 leq a leq 9));如果排成9 列纵队,最后剩下b 个人((0 leq b leq 8));如果排成8 列纵队,最后剩下c 个人((0 leq c leq 7))……如果排成2 列纵队,最后剩下i 个人((0 £ leq i leq 1)),输入a, b, c,…, i,输出广场上士兵的最少可能人数

    设一共有x个士兵,由题意可以得出9个方程:(left{ egin{aligned} x \% 10 &= a_1 \ x \% 9 &= a_2 \ &...\ x \% 2 &= a_9end{aligned} ight.),则:(left{ egin{aligned} x &≡ a_1(mod 10) \ x &≡ a_2(mod 9) \ &......\ x &= a_9(mod 2) end{aligned} ight.),即题目转化为求一次同余式组。由于给出的模数并不是两两互质的,所以采用拓展欧几里得算法求解该问题。

    代码:

    #include <iostream>
    
    using namespace std;
    
    typedef long long LL;
    
    LL exgcd(LL a, LL b, LL &x, LL &y)
    {
        if(!b)
        {
            x = 1, y = 0;
            return a;
        }
        
        LL d = exgcd(b, a % b, y, x);
        y -= (a / b) * x;
        return d;
    }
    
    int main()
    {
        int n;
        cin >> n;
        
        int a[10];
        cout << "请输入a~i:";
    	for(int i = 0; i < 9; i++)
    		scanf("%d", &a[i]);
    		
        bool has_answer = true;
        //作为第一组数据,同时存储每次合并后的结果
        LL a1 = 10, m1 = a[0];
        
        for(int i = 0; i < n-1; i++)
        {
            LL a2 = 10 - i - 1, m2 = a[i + 1];
            
            LL k1, k2;
            LL d = exgcd(a1, a2, k1, k2);
            
            if((m2 - m1) % d)
            {
                has_answer = false;
                break;
            }
            //求出一个解
            k1 *= (m2 - m1) / d;
            //求出最小整数解
            LL t = a2 / d;
            k1 = (k1 % t + t) % t;
            //更新合并后的a1、m1
            m1 = a1 * k1 + m1;
            a1 = abs(a1 / d * a2);
        }
        //最小整数解
        if(has_answer) cout << (m1 % a1 + a1) % a1 << endl;
        else puts("-1");
        
        return 0;
    }
    
  • 相关阅读:
    BSGS算法(大步小步算法)
    UVA-11426【GCD
    UVA-1637【Double Patience】(概率dp)
    UVA-11174【Stand in a Line】
    About
    51nod 1355 斐波那契的最小公倍数
    CodeForces
    CodeForces
    CodeForces
    CodeForces 901C Bipartite Segments
  • 原文地址:https://www.cnblogs.com/grain-rain/p/15430216.html
Copyright © 2011-2022 走看看