Given a set of N people (numbered 1, 2, ..., N), we would like to split everyone into two groups of any size.
Each person may dislike some other people, and they should not go into the same group.
Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people numbered a and b into the same group.
Return true if and only if it is possible to split everyone into two groups in this way.
Example 1:
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4], group2 [2,3]
Example 2:
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false
Note:
1 <= N <= 20000 <= dislikes.length <= 100001 <= dislikes[i][j] <= Ndislikes[i][0] < dislikes[i][1]- There does not exist
i != jfor whichdislikes[i] == dislikes[j].
解法一:
class Solution { public: bool possibleBipartition(int N, vector<vector<int>>& dislikes) { vector<vector<int>> g(N + 1, vector<int>(N + 1)); for (auto dislike : dislikes) { g[dislike[0]][dislike[1]] = 1; g[dislike[1]][dislike[0]] = 1; } vector<int> colors(N + 1); for (int i = 1; i <= N; ++i) { if (colors[i] == 0 && !helper(g, i, 1, colors)) return false; } return true; } bool helper(vector<vector<int>>& g, int cur, int color, vector<int>& colors) { colors[cur] = color; for (int i = 0; i < g.size(); ++i) { if (g[cur][i] == 1) { if (colors[i] == color) return false; if (colors[i] == 0 && !helper(g, i, -color, colors)) return false; } } return true; } };
class Solution { public: bool possibleBipartition(int N, vector<vector<int>>& dislikes) { vector<vector<int>> g(N + 1); for (auto dislike : dislikes) { g[dislike[0]].push_back(dislike[1]); g[dislike[1]].push_back(dislike[0]); } vector<int> colors(N + 1); for (int i = 1; i <= N; ++i) { if (colors[i] != 0) continue; colors[i] = 1; queue<int> q{{i}}; while (!q.empty()) { int t = q.front(); q.pop(); for (int cur : g[t]) { if (colors[cur] == colors[t]) return false; if (colors[cur] == 0) { colors[cur] = -colors[t]; q.push(cur); } } } } return true; } };
class Solution { public: bool possibleBipartition(int N, vector<vector<int>>& dislikes) { unordered_map<int, vector<int>> g; for (auto dislike : dislikes) { g[dislike[0]].push_back(dislike[1]); g[dislike[1]].push_back(dislike[0]); } vector<int> root(N + 1); for (int i = 1; i <= N; ++i) root[i] = i; for (int i = 1; i <= N; ++i) { if (!g.count(i)) continue; int x = find(root, i), y = find(root, g[i][0]); if (x == y) return false; for (int j = 1; j < g[i].size(); ++j) { int parent = find(root, g[i][j]); if (x == parent) return false; root[parent] = y; } } return true; } int find(vector<int>& root, int i) { return root[i] == i ? i : find(root, root[i]); } };
Github 同步地址:
类似题目:
https://leetcode.com/problems/possible-bipartition/
https://leetcode.com/problems/possible-bipartition/discuss/159085/java-graph
https://leetcode.com/problems/possible-bipartition/discuss/195303/Java-Union-Find
https://leetcode.com/problems/possible-bipartition/discuss/158957/Java-DFS-solution