zoukankan      html  css  js  c++  java
  • [LeetCode] 839. Similar String Groups 相似字符串组


    Two strings `X` and `Y` are similar if we can swap two letters (in different positions) of `X`, so that it equals `Y`.

    For example, "tars" and "rats" are similar (swapping at positions 0 and 2), and "rats" and "arts" are similar, but "star" is not similar to "tars""rats", or "arts".

    Together, these form two connected groups by similarity: {"tars", "rats", "arts"} and {"star"}.  Notice that "tars" and "arts" are in the same group even though they are not similar.  Formally, each group is such that a word is in the group if and only if it is similar to at least one other word in the group.

    We are given a list A of strings.  Every string in A is an anagram of every other string in A.  How many groups are there?

    Example 1:

    Input: ["tars","rats","arts","star"]
    Output: 2
    

    Note:

    1. A.length <= 2000
    2. A[i].length <= 1000
    3. A.length * A[i].length <= 20000
    4. All words in A consist of lowercase letters only.
    5. All words in A have the same length and are anagrams of each other.
    6. The judging time limit has been increased for this question.

    这道题定义了字符串之间的一种相似关系,说是对于字符串X和Y,交换X中两个不同位置上的字符,若可以得到Y的话,就说明X和Y是相似的。现在给了我们一个字符串数组,要将相似的字符串放到一个群组里,这里同一个群组里的字符串不必任意两个都相似,而是只要能通过某些结点最终连着就行了,有点像连通图的感觉,将所有连通的结点算作一个群组,问整个数组可以分为多少个群组。由于这道题的本质就是求连通图求群组个数,既然是图,考察的就是遍历啦,就有 DFS 和 BFS 的解法。先来看 DFS 的解法,虽说本质是图的问题,但并不是真正的图,没有邻接链表啥的,这里判断两个结点是否相连其实就是判断是否相似。所以可以写一个判断是否相似的子函数,实现起来也非常的简单,只要按位置对比字符,若不相等则 diff 自增1,若 diff 大于2了直接返回 false,因为只有 diff 正好等于2或者0的时候才相似。题目中说了字符串之间都是异构词,说明字符的种类个数都一样,只是顺序不同,就不可能出现奇数的 diff,而两个字符串完全相等时也是满足要求的,是相似的。下面来进行 DFS 遍历,用一个 HashSet 来记录遍历过的字符串,对于遍历到的字符串,若已经在 HashSet 中存在了,直接跳过,否则结果 res 自增1,并调用递归函数。这里递归函数的作用是找出所有相似的字符串,首先还是判断当前字符串 str 是否访问过,是的话直接返回,否则加入 HashSet 中。然后再遍历一遍原字符串数组,每一个遍历到的字符串 word 都和 str 检测是否相似,相似的话就对这个 word 调用递归函数,这样就可以找出所有相似的字符串啦,参见代码如下:
    解法一:
    class Solution {
    public:
        int numSimilarGroups(vector<string>& A) {
            int res = 0, n = A.size();
            unordered_set<string> visited;
            for (string str : A) {
    			if (visited.count(str)) continue;
    			++res;
    			helper(A, str, visited);
    		}
    		return res;
       	}
       	void helper(vector<string>& A, string& str, unordered_set<string>& visited) {
       		if (visited.count(str)) return;
       		visited.insert(str);
       		for (string word : A) {
       			if (isSimilar(word, str)) {
       				helper(A, word, visited);
       			}
       		}
       	}
       	bool isSimilar(string& str1, string& str2) {
       		for (int i = 0, cnt = 0; i < str1.size(); ++i) {
       			if (str1[i] == str2[i]) continue;
       			if (++cnt > 2) return false;
       		}
       		return true;
       	}
    };
    

    我们也可以使用 BFS 遍历来做,用一个 bool 型数组来标记访问过的单词,同时用队列 queue 来辅助计算。遍历所有的单词,假如已经访问过了,则直接跳过,否则就要标记为 true,然后结果 res 自增1,这里跟上面 DFS 的解法原理一样,要一次找完和当前结点相连的所有结点,只不过这里用了迭代的 BFS 的写法。先将当前字符串加入队列 queue 中,然后进行 while 循环,取出队首字符串,再遍历一遍所有字符串,遇到访问过的就跳过,然后统计每个字符串和队首字符串之间的不同字符个数,假如最终 diff 为0的话,说明是一样的,此时不加入队列,但是要标记这个字符串为 true;若最终 diff 为2,说明是相似的,除了要标记字符串为 true,还要将其加入队列进行下一轮查找,参见代码如下:
    解法二:
    class Solution {
    public:
        int numSimilarGroups(vector<string>& A) {
            int res = 0, n = A.size();
            vector<bool> visited(n);
            queue<string> q;
            for (int i = 0; i < n; ++i) {
            	if (visited[i]) continue;
            	visited[i] = true;
            	++res;
            	q.push(A[i]);
            	while (!q.empty()) {
            		string t = q.front(); q.pop();
            		for (int j = 0; j < n; ++j) {
            			if (visited[j]) continue;
            			int diff = 0;
            			for (int k = 0; k < A[j].size(); ++k) {
            				if (t[k] == A[j][k]) continue;
            				if (++diff > 2) break;
            			}
                        if (diff == 0) visited[j] = true;
            			if (diff == 2) {
            				visited[j] = true;
            				q.push(A[j]);
            			}
            		}
            	}
            }
            return res;
        }
    };
    

    对于这种群组归类问题,很适合使用联合查找 Union Find 来做,LeetCode 中也有其他用到这个思路的题目,比如 [Friend Circles](http://www.cnblogs.com/grandyang/p/6686983.html),[Accounts Merge](http://www.cnblogs.com/grandyang/p/7829169.html),[Redundant Connection II](http://www.cnblogs.com/grandyang/p/8445733.html),[Redundant Connection](http://www.cnblogs.com/grandyang/p/7628977.html),[Number of Islands II](http://www.cnblogs.com/grandyang/p/5190419.html),[Graph Valid Tree](http://www.cnblogs.com/grandyang/p/5257919.html),和 [Number of Connected Components in an Undirected Graph](http://www.cnblogs.com/grandyang/p/5166356.html)。都是要用一个 root 数组,每个点开始初始化为不同的值,如果两个点属于相同的组,就将其中一个点的 root 值赋值为另一个点的位置,这样只要是相同组里的两点,通过 getRoot 函数得到相同的值。所以这里对于每个结点 A[i],都遍历前面所有结点 A[j],假如二者不相似,直接跳过;否则将 A[j] 结点的 root 值更新为i,这样所有相连的结点的 root 值就相同了,一个群组中只有一个结点的 root 值会保留为其的初始值,所以最后只要统计到底还有多少个结点的 root 值还是初始值,就知道有多少个群组了,参见代码如下:
    解法三:
    class Solution {
    public:
        int numSimilarGroups(vector<string>& A) {
            int res = 0, n = A.size();
            vector<int> root(n);
            for (int i = 0; i < n; ++i) root[i] = i;
            for (int i = 1; i < n; ++i) {
                for (int j = 0; j < i; ++j) {
                    if (!isSimilar(A[i], A[j])) continue;
                    root[getRoot(root, j)] = i;
                }
            }
            for (int i = 0; i < n; ++i) {
            	if (root[i] == i) ++res;
            }
            return res;
        }
        int getRoot(vector<int>& root, int i) {
            return (root[i] == i) ? i : getRoot(root, root[i]);
        }
        bool isSimilar(string& str1, string& str2) {
       		for (int i = 0, cnt = 0; i < str1.size(); ++i) {
       			if (str1[i] == str2[i]) continue;
       			if (++cnt > 2) return false;
       		}
       		return true;
       	}
    };
    

    Github 同步地址:

    https://github.com/grandyang/leetcode/issues/839


    类似题目:

    Friend Circles

    Accounts Merge

    Redundant Connection II

    Redundant Connection

    Number of Islands II

    Graph Valid Tree

    Number of Connected Components in an Undirected Graph


    参考资料:

    https://leetcode.com/problems/similar-string-groups/

    https://leetcode.com/problems/similar-string-groups/discuss/200934/My-Union-Find-Java-Solution

    https://leetcode.com/problems/similar-string-groups/discuss/282212/Java-two-solutions-BFS-and-Union-Find

    https://leetcode.com/problems/similar-string-groups/discuss/296251/DFS-with-Explanation-(Also-Highlighting-Misleading-Strategy)


    [LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)
  • 相关阅读:
    razor在App_Code中使用ActionLink无效的解决方案
    科技的进步会给人带来幸福么?
    C6000系列之C6455 DSP的EMIFA接口
    C6000系列之C6455DSP的GPIO模块
    C语言文件操作与例子
    C语言中fscanf函数读取double型浮点数的问题
    MATLAB读取CCS保存的数据
    CCS 3.3 操作C函数读写文件
    复数矩阵乘法C语言实现
    C6000系列之C6455DSP的中断系统
  • 原文地址:https://www.cnblogs.com/grandyang/p/11503433.html
Copyright © 2011-2022 走看看