Evaluate the value of an arithmetic expression in Reverse Polish Notation.
Valid operators are +
, -
, *
, /
. Each operand may be an integer or another expression.
Note:
- Division between two integers should truncate toward zero.
- The given RPN expression is always valid. That means the expression would always evaluate to a result and there won't be any divide by zero operation.
Example 1:
Input: ["2", "1", "+", "3", "*"] Output: 9 Explanation: ((2 + 1) * 3) = 9
Example 2:
Input: ["4", "13", "5", "/", "+"] Output: 6 Explanation: (4 + (13 / 5)) = 6
Example 3:
Input: ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"] Output: 22 Explanation: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
逆波兰表达式就是把操作数放前面,把操作符后置的一种写法,我们通过观察可以发现,第一个出现的运算符,其前面必有两个数字,当这个运算符和之前两个数字完成运算后从原数组中删去,把得到一个新的数字插入到原来的位置,继续做相同运算,直至整个数组变为一个数字。于是按这种思路写了代码如下,但是拿到OJ上测试,发现会有Time Limit Exceeded的错误,无奈只好上网搜答案,发现大家都是用栈做的。仔细想想,这道题果然应该是栈的完美应用啊,从前往后遍历数组,遇到数字则压入栈中,遇到符号,则把栈顶的两个数字拿出来运算,把结果再压入栈中,直到遍历完整个数组,栈顶数字即为最终答案。代码如下:
解法一:
class Solution { public: int evalRPN(vector<string>& tokens) { if (tokens.size() == 1) return stoi(tokens[0]); stack<int> st; for (int i = 0; i < tokens.size(); ++i) { if (tokens[i] != "+" && tokens[i] != "-" && tokens[i] != "*" && tokens[i] != "/") { st.push(stoi(tokens[i])); } else { int num1 = st.top(); st.pop(); int num2 = st.top(); st.pop(); if (tokens[i] == "+") st.push(num2 + num1); if (tokens[i] == "-") st.push(num2 - num1); if (tokens[i] == "*") st.push(num2 * num1); if (tokens[i] == "/") st.push(num2 / num1); } } return st.top(); } };
我们也可以用递归来做,由于一个有效的逆波兰表达式的末尾必定是操作符,所以我们可以从末尾开始处理,如果遇到操作符,向前两个位置调用递归函数,找出前面两个数字,然后进行操作将结果返回,如果遇到的是数字直接返回即可,参见代码如下:
解法二:
class Solution { public: int evalRPN(vector<string>& tokens) { int op = (int)tokens.size() - 1; return helper(tokens, op); } int helper(vector<string>& tokens, int& op) { string str = tokens[op]; if (str != "+" && str != "-" && str != "*" && str != "/") return stoi(str); int num1 = helper(tokens, --op); int num2 = helper(tokens, --op); if (str == "+") return num2 + num1; if (str == "-") return num2 - num1; if (str == "*") return num2 * num1; return num2 / num1; } };
类似题目:
参考资料: