zoukankan      html  css  js  c++  java
  • [LeetCode] Implement Queue using Stacks 用栈来实现队列

    Implement the following operations of a queue using stacks.

    • push(x) -- Push element x to the back of queue.
    • pop() -- Removes the element from in front of queue.
    • peek() -- Get the front element.
    • empty() -- Return whether the queue is empty.

    Notes:

    • You must use only standard operations of a stack -- which means only push to top, peek/pop from top, size, and is empty operations are valid.
    • Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.
    • You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).

    这道题让我们用栈来实现队列,之前我们做过一道相反的题目Implement Stack using Queues 用队列来实现栈,是用队列来实现栈。这道题颠倒了个顺序,起始并没有太大的区别,栈和队列的核心不同点就是栈是先进后出,而队列是先进先出,那么我们要用栈的先进后出的特性来模拟出队列的先进先出。那么怎么做呢,其实很简单,只要我们在插入元素的时候每次都都从前面插入即可,比如如果一个队列是1,2,3,4,那么我们在栈中保存为4,3,2,1,那么返回栈顶元素1,也就是队列的首元素,则问题迎刃而解。所以此题的难度是push函数,我们需要一个辅助栈tmp,把s的元素也逆着顺序存入tmp中,此时加入新元素x,再把tmp中的元素存回来,这样就是我们要的顺序了,其他三个操作也就直接调用栈的操作即可,参见代码如下:

    解法一:

    class MyQueue {
    public:
        /** Initialize your data structure here. */
        MyQueue() {}
        
        /** Push element x to the back of queue. */
        void push(int x) {
            stack<int> tmp;
            while (!st.empty()) {
                tmp.push(st.top()); st.pop();
            }
            st.push(x);
            while (!tmp.empty()) {
                st.push(tmp.top()); tmp.pop();
            }
        }
        
        /** Removes the element from in front of queue and returns that element. */
        int pop() {
            int val = st.top(); st.pop();
            return val;
        }
        
        /** Get the front element. */
        int peek() {
            return st.top();
        }
        
        /** Returns whether the queue is empty. */
        bool empty() {
            return st.empty();
        }
        
    private:
        stack<int> st;
    };

    上面那个解法虽然简单,但是效率不高,因为每次在push的时候,都要翻转两边栈,下面这个方法使用了两个栈_new和_old,其中新进栈的都先缓存在_new中,入股要pop和peek的时候,才将_new中所有元素移到_old中操作,提高了效率,代码如下:

    解法二:

    class MyQueue {
    public:
        /** Initialize your data structure here. */
        MyQueue() {}
        
        /** Push element x to the back of queue. */
        void push(int x) {
            _new.push(x);
        }
        
        /** Removes the element from in front of queue and returns that element. */
        int pop() {
            shiftStack();
            int val = _old.top(); _old.pop();
            return val;
        }
        
        /** Get the front element. */
        int peek() {
            shiftStack();
            return _old.top();
        }
        
        /** Returns whether the queue is empty. */
        bool empty() {
            return _old.empty() && _new.empty();
        }
        
        void shiftStack() {
            if (!_old.empty()) return;
            while (!_new.empty()) {
                _old.push(_new.top());
                _new.pop();
            }
        }
        
    private:
        stack<int> _old, _new;
    };

    类似题目:

    Implement Stack using Queues

    参考资料:

    https://leetcode.com/problems/implement-queue-using-stacks/

    https://leetcode.com/problems/implement-queue-using-stacks/discuss/64197/Easy-Java-solution-just-edit-push()-method

    https://leetcode.com/problems/implement-queue-using-stacks/discuss/64206/Short-O(1)-amortized-C%2B%2B-Java-Ruby

    LeetCode All in One 题目讲解汇总(持续更新中...)

  • 相关阅读:
    0. 序列
    Megacli 常用
    4. Storm可靠性
    3. Storm编程框架
    2. Storm消息流
    1.1 Storm集群安装部署步骤
    poj3723,最 大 生成树
    次短路
    无间道之并查集
    最小生成树二Kruscal算法
  • 原文地址:https://www.cnblogs.com/grandyang/p/4626238.html
Copyright © 2011-2022 走看看