Given a grid where each entry is only 0 or 1, find the number of corner rectangles.
A corner rectangle is 4 distinct 1s on the grid that form an axis-aligned rectangle. Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.
Example 1:
Input: grid = [[1, 0, 0, 1, 0], [0, 0, 1, 0, 1], [0, 0, 0, 1, 0], [1, 0, 1, 0, 1]] Output: 1 Explanation: There is only one corner rectangle, with corners grid[1][2], grid[1][4], grid[3][2], grid[3][4].
Example 2:
Input: grid = [[1, 1, 1], [1, 1, 1], [1, 1, 1]] Output: 9 Explanation: There are four 2x2 rectangles, four 2x3 and 3x2 rectangles, and one 3x3 rectangle.
Example 3:
Input: grid = [[1, 1, 1, 1]] Output: 0 Explanation: Rectangles must have four distinct corners.
Note:
- The number of rows and columns of
grid
will each be in the range[1, 200]
. - Each
grid[i][j]
will be either0
or1
. - The number of
1
s in the grid will be at most6000
.
这道题给了我们一个由0和1组成的二维数组,这里定义了一种边角矩形,其四个顶点均为1,让我们求这个二维数组中有多少个不同的边角矩形。那么最简单直接的方法就是暴力破解啦,我们遍历所有的子矩形,并且检验其四个顶点是否为1即可。先确定左上顶点,每个顶点都可以当作左上顶点,所以需要两个for循环,然后我们直接跳过非1的左上顶点,接下来就是要确定右上顶点和左下顶点了,先用一个for循环确定左下顶点的位置,同理,如果左下顶点为0,直接跳过。再用一个for循环确定右上顶点的位置,如果右上顶点位置也确定了,那么此时四个顶点中确定了三个,右下顶点的位置也就确定了,此时如果右上和右下顶点均为1,则结果res自增1,参见代码如下:
解法一:
class Solution { public: int countCornerRectangles(vector<vector<int>>& grid) { int m = grid.size(), n = grid[0].size(), res = 0; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (grid[i][j] == 0) continue; for (int h = 1; h < m - i; ++h) { if (grid[i + h][j] == 0) continue; for (int w = 1; w < n - j; ++w) { if (grid[i][j + w] == 1 && grid[i + h][j + w] == 1) ++res; } } } } return res; } };
我们来看一种优化了时间复杂度的方法,这种方法的原理是两行同时遍历,如果两行中相同列位置的值都为1,则计数器cnt自增1,那么最后就相当于有了(cnt - 1)个相邻的格子,问题就转化为了求cnt-1个相邻的格子能组成多少个矩形,就变成了初中数学问题了,共有cnt*(cnt-1)/2个,参见代码如下:
解法二:
class Solution { public: int countCornerRectangles(vector<vector<int>>& grid) { int m = grid.size(), n = grid[0].size(), res = 0; for (int i = 0; i < m; ++i) { for (int j = i + 1; j < m; ++j) { int cnt = 0; for (int k = 0; k < n; ++k) { if (grid[i][k] == 1 && grid[j][k] == 1) ++cnt; } res += cnt * (cnt - 1) / 2; } } return res; } };
下面这种解法由热心网友edyyy提供,最大亮点是将解法二的beat 65%提高到了beat 97%,速度杠杠的,要飞起来了的节奏。在遍历前一行的时候,将所有为1的位置存入到了一个数组ones中,然后在遍历其他行时,直接检测ones数组中的那些位置是否为1,这样省去了检查一些之前行为0的步骤,提高了运行速度,但是也牺牲了一些空间,比如需要ones数组,算是个trade off吧,参见代码如下:
解法三:
class Solution { public: int countCornerRectangles(vector<vector<int>>& grid) { int m = grid.size(), n = grid[0].size(), res = 0; for (int i = 0; i < m - 1; i++) { vector<int> ones; for (int k = 0; k < n; k++) if (grid[i][k]) ones.push_back(k); for (int j = i + 1; j < m; j++) { int cnt = 0; for (int l = 0; l < ones.size(); l++) { if (grid[j][ones[l]]) cnt++; } res += cnt * (cnt - 1) / 2; } } return res; } };
参考资料:
https://discuss.leetcode.com/topic/114177/short-java-ac-solution-o-m-2-n-with-explanation