You have a list of points in the plane. Return the area of the largest triangle that can be formed by any 3 of the points.
Example: Input: points = [[0,0],[0,1],[1,0],[0,2],[2,0]] Output: 2 Explanation: The five points are show in the figure below. The red triangle is the largest.
Notes:
3 <= points.length <= 50
.- No points will be duplicated.
-
-50 <= points[i][j] <= 50
. - Answers within
10^-6
of the true value will be accepted as correct.
这道题给了我们一系列的二维平面上的点,让我们找出任意三个点能组成的最大三角形的面积。那么我们只能遍历所有的三角形面积,然后找出最大的那个。貌似这道题也没有啥特别简便的方法,不遍历不行啊。遍历任意三个点简单,问题来了,如何通过三个顶点的坐标求出三角形面积,这个可就是初中几何题了,博主也不记得,只能上网搜一波。就是用下面这个公式即可:
这里面三个顶点分别是(x1, y1),(x2, y2),(x3, y3),有了公式后,本题就没有什么难点了,参见代码如下:
解法一:
class Solution { public: double largestTriangleArea(vector<vector<int>>& points) { double res = 0; for (int i = 0; i < points.size(); ++i) { for (int j = i + 1; j < points.size(); ++j) { for (int k = j + 1; k < points.size(); ++k) { int x1 = points[i][0], y1 = points[i][1]; int x2 = points[j][0], y2 = points[j][1]; int x3 = points[k][0], y3 = points[k][1]; double area = abs(0.5 * (x2 * y3 + x1 * y2 + x3 * y1 - x3 * y2 - x2 * y1 - x1 * y3)); res = max(res, area); } } } return res; } };
我们也可以稍稍简化一下上面的写法,但是解题思路没有任何区别,参见代码如下:
解法二:
class Solution { public: double largestTriangleArea(vector<vector<int>>& points) { double res = 0; for (auto &i : points) { for (auto &j : points) { for (auto &k : points) { res = max(res, 0.5 * abs(i[0] * j[1] + j[0] * k[1] + k[0] * i[1]- j[0] * i[1] - k[0] * j[1] - i[0] * k[1])); } } } return res; } };
参考资料: