Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode * constructSubtree(vector<int> &preOrder, int preStart, int preEnd, vector<int> &inOrder, int inStart, int inEnd){
// if(preStart < preEnd) return NULL ;
int temp = preOrder[preStart] ;
TreeNode *root = new TreeNode(temp) ;
if(preStart == preEnd)
return root ;
int i;
for(i = inStart ; i<= inEnd ;i++)
if(inOrder[i] == temp ) break;
root->left = preStart+1 <= preStart+i-inStart ? constructSubtree(preOrder, preStart+1, preStart+i-inStart, inOrder, inStart, i-1) : NULL;
root->right = preStart+i-inStart+1 <= preEnd ? constructSubtree(preOrder, preStart+i-inStart+1, preEnd, inOrder, i+1, inEnd) : NULL;
return root ;
}
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(preorder.size() == 0 ) return NULL;
TreeNode *root = new TreeNode(preorder[0]) ;
if(preorder.size() == 1 ) return root ;
int i;
int temp = preorder[0] ;
for(i = 0; i< inorder.size(); i++)
if(inorder[i] == temp) break ;
root->left = 1 <= i ? constructSubtree(preorder, 1,i,inorder, 0, i-1) : NULL ;
root->right = i+1 <= preorder.size()-1 ? constructSubtree(preorder, i+1,preorder.size()-1, inorder, i+1, inorder.size() -1): NULL ;
return root;
}
};
--------------------------------------------------------------------天道酬勤!