zoukankan      html  css  js  c++  java
  • PaperImpl

    PaperImpl - A fast triangle-triangle intersection test

    论文阅读参见:https://www.cnblogs.com/grass-and-moon/p/13297665.html

    对论文代码进行了实现具体如下,三角形的数据结构如下:

    // geometry_structure.h
    #include <Eigen/Dense>
    
    typedef Eigen::Vector3d Point3d;
    
    class Triangle 
    {
    public:
        Triangle(Point3d pt0, Point3d pt1, Point3d pt2) : m_pt {pt0, pt1, pt2} 
        {
            auto vecPt0TPt1 = pt1 - pt0;
            auto vecPt0TPt2 = pt2 - pt0;
            m_vecNormal = vecPt0TPt1.cross(vecPt0TPt2);
            m_vecNormal.normalize();
        }
    
        double GetDistanceFromPointToTrianglePlane(Point3d pt) const
        {
            auto vecPtTPt0 = m_pt[0] - pt;
            
            return m_vecNormal.dot(vecPtTPt0);
        }
    
        void GetTriangleVertices(Point3d (&pt)[3]) const
        {
            pt[0] = m_pt[0];
            pt[1] = m_pt[1];
            pt[2] = m_pt[2];
        }
    
        void GetNormal(Eigen::Vector3d &vecNormal) const
        {
            vecNormal = m_vecNormal;
        }
    
    private:
        Point3d m_pt[3];
        Eigen::Vector3d m_vecNormal;
    };
    

    相交测试代码实现如下:

    // triangle_intersection_test.h
    #pragma once
    
    #include <cmath>
    #include <algorithm>
    #include <assert.h>
    
    #include "geometry_structure.h"
    
    namespace IntersectionTest
    {
    #define EPSION 1e-7
    
        enum IntersectionType
        {
            INTERSECTION,             //< 有相交线段
            DISJOINT,                 //< 不相交
            COPLANE                   //< 共面
        };
    
        bool IsZero(double value, double epsion = EPSION)
        {
            return std::abs(value) < epsion;
        }
    
        bool IsEqual(double v1, double v2, double epsion = EPSION)
        {
            return IsZero(v1-v2, epsion);
        }
    
        bool IsPositive(double value, double epsion = EPSION)
        {
            return value - epsion > 0;
        }
    
        bool IsNegative(double value, double epsion = EPSION)
        {
            return value + epsion < 0;
        }
    
        int GetSignType(double value)
        {
            if (IsZero(value)) return 0;
            if (IsPositive(value)) return 1;
            return -1;
        }
    
        template<typename T>
        void Swap(T &a, T &b)
        {
            auto tmp = a;
            a = b;
            b = tmp;
        }
    
        void GetVertexNewOrder(const int (&disVTri1SignType)[3], const double (&disVTri1TPlaneTri2)[3], int (&vertexTri1NewOrder)[3])
        {
            // 将顶点划分成两部分,0,2位于另一个三角形同一侧,1位于另一个三角形另一侧
            vertexTri1NewOrder[0] = 0;
            vertexTri1NewOrder[1] = 1;
            vertexTri1NewOrder[2] = 2;
    
            int prodValue = disVTri1SignType[0] * disVTri1SignType[1] * disVTri1SignType[2];
            // 如果乘积<0,则小于0的为单独的点
            if (prodValue < 0) {
                for (int i = 0; i < 3; ++i) {
                    if (disVTri1TPlaneTri2[i] < 0) {
                        Swap(vertexTri1NewOrder[i], vertexTri1NewOrder[1]);
                        break;
                    }
                }
            }
            // 如果乘积>0,则大于0的为单独的点
            else if (prodValue > 0) {
                for (int i = 0; i < 3; ++i) {
                    if (disVTri1TPlaneTri2[i] > 0) {
                        Swap(vertexTri1NewOrder[i], vertexTri1NewOrder[1]);
                        break;
                    }
                }
            }
            // 有点位于平面上
            else {
                int sumValue = disVTri1SignType[0] + disVTri1SignType[1] + disVTri1SignType[2];
                // 如果只有一个点等于0,并且另外两个点同号,那么等于0的点为单独的点
                if (std::abs(sumValue) == 2) {
                    for (int i = 0; i < 3; ++i) {
                        if (disVTri1TPlaneTri2[i] == 0) {
                            Swap(vertexTri1NewOrder[i], vertexTri1NewOrder[1]);
                            break;
                        }
                    }
                }
                // 如果只有一个点等于0,并且另外两个点异号,那么假定小于0的点为单独的点
                else if (std::abs(sumValue) == 0) {
                    for (int i = 0; i < 3; ++i) {
                        if (disVTri1TPlaneTri2[i] < 0) {
                            Swap(vertexTri1NewOrder[i], vertexTri1NewOrder[1]);
                            break;
                        }
                    }
                }
                // 如果两个点等于0,那么不等于0的点为单独的点
                else {
                    for (int i = 0; i < 3; ++i) {
                        if (disVTri1TPlaneTri2[i] != 0) {
                            Swap(vertexTri1NewOrder[i], vertexTri1NewOrder[1]);
                            break;
                        }
                    }
                }
            }
        }
    
        void CalculateT(
            const Eigen::Vector3d& vecNormalTri1,
            const double(&disVTri1TPlaneTri2)[3], 
            const int (&vertexTri1NewOrder)[3], 
            const Point3d (&verticesTri1)[3], 
            double (&tTri1)[2])
        {
    
            int maxValueIndex = 0;;
            double maxValue = vecNormalTri1[0];
            for (int i = 1; i < 3; ++i) {
                if (maxValue < vecNormalTri1[i]) {
                    maxValue = vecNormalTri1[i];
                    maxValueIndex = i;
                }
            }
    
            double pTri1OnLine[3] = {
                verticesTri1[vertexTri1NewOrder[0]](maxValueIndex),
                verticesTri1[vertexTri1NewOrder[1]](maxValueIndex),
                verticesTri1[vertexTri1NewOrder[2]](maxValueIndex) };
    
            double tTri1[2];
            tTri1[0] = pTri1OnLine[0] +
                (pTri1OnLine[1] - pTri1OnLine[0]) *
                disVTri1TPlaneTri2[vertexTri1NewOrder[0]] /
                (disVTri1TPlaneTri2[vertexTri1NewOrder[0]] - disVTri1TPlaneTri2[vertexTri1NewOrder[1]]);
            tTri1[1] = pTri1OnLine[2] +
                (pTri1OnLine[1] - pTri1OnLine[2]) *
                disVTri1TPlaneTri2[vertexTri1NewOrder[2]] /
                (disVTri1TPlaneTri2[vertexTri1NewOrder[2]] - disVTri1TPlaneTri2[vertexTri1NewOrder[1]]);
        }
    
        IntersectionType TriangleIntersectionTest(const Triangle& tri1, const Triangle& tri2) 
        {
            Point3d verticesTri1[3], verticesTri2[3];
            tri1.GetTriangleVertices(verticesTri1);
            tri2.GetTriangleVertices(verticesTri2);
    
            double disVTri2TPlaneTri1[3];
            int disVTri2SignType[3];
            double disVTri1TPlaneTri2[3];
            int disVTri1SignType[3];
    
            for (int i = 0; i < 3; ++i) {
                disVTri2TPlaneTri1[i] = tri1.GetDistanceFromPointToTrianglePlane(verticesTri2[i]);
                disVTri2SignType[i] = GetSignType(disVTri2TPlaneTri1[i]);
            }
    
            // 如果三角形Tri2的三个顶点在三角形Tri1的同一侧,则不相交
            if ((disVTri2SignType[0] > 0 && disVTri2SignType[1] > 0 && disVTri2SignType[2] > 0) ||
                (disVTri2SignType[0] < 0 && disVTri2SignType[1] < 0 && disVTri2SignType[2] < 0)) {
                return DISJOINT;
            }
            
            // 都为0,则共面
            if ((disVTri2SignType[0] | disVTri2SignType[1] | disVTri2SignType[2]) == 0) {
                return COPLANE;
            }
            
            for (int i = 0; i < 3; ++i) {
                disVTri1TPlaneTri2[i] = tri2.GetDistanceFromPointToTrianglePlane(verticesTri1[i]);
                disVTri1SignType[i] = GetSignType(disVTri1TPlaneTri2[i]);
            }
    
            // 如果三角形Tri1的三个顶点在三角形Tri2的同一侧,则不相交
            if ((disVTri1SignType[0] > 0 && disVTri1SignType[1] > 0 && disVTri1SignType[2] > 0) ||
                (disVTri1SignType[0] < 0 && disVTri1SignType[1] < 0 && disVTri1SignType[2] < 0)) {
                return DISJOINT;
            }
    
            // 都为0,则共面
            if ((disVTri1SignType[0] | disVTri1SignType[1] | disVTri1SignType[2]) == 0) {
                return COPLANE;
            }
    
            // 对顶点顺序进行调整,如何论文中的描述
            int vertexTri1NewOrder[3] = { 0, 1, 2 };
            int vertexTri2NewOrder[3] = { 0, 1, 2 };
            GetVertexNewOrder(disVTri1SignType, disVTri1TPlaneTri2, vertexTri1NewOrder);
            GetVertexNewOrder(disVTri2SignType, disVTri2TPlaneTri1, vertexTri2NewOrder);
    
            Eigen::Vector3d vecNormalTri1, vecNormalTri2;
            tri1.GetNormal(vecNormalTri1);
            tri2.GetNormal(vecNormalTri2);
    
            double tTri1[2], tTri2[2];
            // 计算相交线和每个三角形的相交线段
            CalculateT(vecNormalTri1, disVTri1TPlaneTri2, vertexTri1NewOrder, verticesTri1, tTri1);
            CalculateT(vecNormalTri2, disVTri2TPlaneTri1, vertexTri2NewOrder, verticesTri2, tTri2);
    
            if (tTri1[0] > tTri1[1]) Swap(tTri1[0], tTri1[1]);
    
            // 比较是否overlap
            if ((tTri2[0] > tTri1[0] && tTri2[0] < tTri1[1]) ||
                (tTri2[1] > tTri1[0] && tTri2[1] < tTri1[1])) {
                return INTERSECTION;
            }
    
            return DISJOINT;
        }
    
        void TestCase()
        {
            {
                Triangle tr1(Point3d(0, 0, 0), Point3d(1, 0, 1), Point3d(0, 1, 1));
                Triangle tr2(Point3d(1, 1, 0), Point3d(1, 1, 1), Point3d(0, 0, 1));
    
                auto type = IntersectionTest::TriangleIntersectionTest(tr1, tr2);
    
                assert(type == IntersectionTest::INTERSECTION);
            }
    
            {
    
                Triangle tr1(Point3d(0, 0, 0), Point3d(0, 0, 1), Point3d(1, 1, 0));
                Triangle tr2(Point3d(1, 1, 0), Point3d(1, 1, 1), Point3d(0, 0, 1));
    
                auto type = IntersectionTest::TriangleIntersectionTest(tr1, tr2);
    
                assert(type == IntersectionTest::COPLANE);
            }
    
            {
                Triangle tr1(Point3d(0, 0, 0), Point3d(0, 0, 1), Point3d(1, 1, 0));
                Triangle tr2(Point3d(1, 0, 1), Point3d(0, 1, 1), Point3d(1, 1, 1));
    
                auto type = IntersectionTest::TriangleIntersectionTest(tr1, tr2);
    
                assert(type == IntersectionTest::DISJOINT);
            }
        }
    };
    

    测试main函数如下:

    // main.cpp
    #include "triangle_intersection_test.h"
    
    int main()
    {
        IntersectionTest::TestCase();
        return 0;
    }
    
  • 相关阅读:
    【转载】时域信号的频谱、功率谱和功率谱密度计算
    【转载】Chaotic Time-Series Prediction
    【转载】Restarting an analysis in ANSYS
    Interpolation in MATLAB
    【转载】ANSYS 动力分析 (9)
    在oracle中 将一个以逗号隔开的String字符串转换成以单引号逗号隔开的集合
    在java中获取时间,单位毫秒。主要用于查看执行时间效率
    比较两个数组元素是否相等
    oracle 从一张表的数据复制到另一张表中 mapper.xml
    打印错误栈信息:可以捕获具体错误信息
  • 原文地址:https://www.cnblogs.com/grass-and-moon/p/13300247.html
Copyright © 2011-2022 走看看