zoukankan      html  css  js  c++  java
  • HDU-6185-Covering(推递推式+矩阵快速幂)

    Covering

    Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3078    Accepted Submission(s): 1117


    Problem Description
    Bob's school has a big playground, boys and girls always play games here after school.

    To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.

    Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.

    He has infinite carpets with sizes of 1×2 and 2×1, and the size of the playground is 4×n.

    Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?
     
    Input
    There are no more than 5000 test cases. 

    Each test case only contains one positive integer n in a line.

    1n1018
     
    Output
    For each test cases, output the answer mod 1000000007 in a line.
     
    Sample Input
    1 2
     
    Sample Output
    1 5

     题意:4xn的地面,用1x2或者2x1的地毯自由组合铺满,有几种方案(答案mod 1e9+7)

    解题思路:(草稿纸冲冲冲)

                    

    有了递推式,矩阵快速幂就好了

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long ll;
     4 typedef unsigned long long ull;
     5 #define INF 0X3f3f3f3f
     6 const ll MAXN = 4;
     7 const ll mod = 1e9 + 7;
     8 //矩阵的大小 模数
     9 ll n;
    10 struct MAT
    11 {
    12     ll mat[MAXN][MAXN];
    13     MAT operator*(const MAT &a) const
    14     {
    15         //重载矩阵乘法
    16         MAT b;
    17         memset(b.mat, 0, sizeof(b.mat));
    18         for (int i = 0; i < MAXN; i++)
    19         {
    20             for (int j = 0; j < MAXN; j++)
    21             {
    22                 for (int k = 0; k < MAXN; k++)
    23                     b.mat[i][j] = (b.mat[i][j] + mat[i][k] * a.mat[k][j]);
    24                 b.mat[i][j] += mod;
    25                 b.mat[i][j] %= mod;
    26             }
    27         }
    28         return b;
    29     }
    30 } start, ans;
    31 MAT Mqpow(MAT base, ll b)
    32 {
    33     MAT r;
    34     memset(r.mat, 0, sizeof(r.mat));
    35     r.mat[0][0] = 1, r.mat[1][0] = 5, r.mat[2][0] = 11, r.mat[3][0] = 36;
    36     //初始状态
    37     while (b)
    38     {
    39         if (b & 1)
    40             r = base * r;
    41         base = base * base;
    42         b >>= 1;
    43     }
    44     return r;
    45 }
    46 int main()
    47 {
    48 
    49     start.mat[0][0] = 0, start.mat[0][1] = 1, start.mat[0][2] = 0, start.mat[0][3] = 0;
    50     start.mat[1][0] = 0, start.mat[1][1] = 0, start.mat[1][2] = 1, start.mat[1][3] = 0;
    51     start.mat[2][0] = 0, start.mat[2][1] = 0, start.mat[2][2] = 0, start.mat[2][3] = 1;
    52     start.mat[3][0] = -1, start.mat[3][1] = 1, start.mat[3][2] = 5, start.mat[3][3] = 1;
    53     //建立转移矩阵
    54     ll f[5] = {0, 1, 5, 11, 36};
    55     while (~scanf("%lld", &n))
    56     {
    57         if (n <= 4)
    58             printf("%lld
    ", f[n] % mod);
    59         else
    60             printf("%lld
    ", Mqpow(start, n - 4).mat[3][0]);
    61     }
    62     return 0;
    63 }
  • 相关阅读:
    [AHOI2006]文本编辑器 Splay tree区间操作
    HDU-3487 Play with Chain Splay tee区间反转,移动
    HDU-4619 Warm up 2 二分匹配
    HDU-4618 Palindrome Sub-Array 暴力枚举
    HDU-4616 Game 树形DP
    HDU-4614 Vases and Flowers 线段树区间更新
    HDU-4612 Warm up 边双连通分量+缩点+最长链
    HDU-4611 Balls Rearrangement 循环节,模拟
    HDU-4605 Magic Ball Game 树状数组+离散+dfs
    HDU-3436 Queue-jumpers 树状数组 | Splay tree删除,移动
  • 原文地址:https://www.cnblogs.com/graytido/p/10885103.html
Copyright © 2011-2022 走看看