zoukankan      html  css  js  c++  java
  • HDU-6185-Covering(推递推式+矩阵快速幂)

    Covering

    Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3078    Accepted Submission(s): 1117


    Problem Description
    Bob's school has a big playground, boys and girls always play games here after school.

    To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.

    Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.

    He has infinite carpets with sizes of 1×2 and 2×1, and the size of the playground is 4×n.

    Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?
     
    Input
    There are no more than 5000 test cases. 

    Each test case only contains one positive integer n in a line.

    1n1018
     
    Output
    For each test cases, output the answer mod 1000000007 in a line.
     
    Sample Input
    1 2
     
    Sample Output
    1 5

     题意:4xn的地面,用1x2或者2x1的地毯自由组合铺满,有几种方案(答案mod 1e9+7)

    解题思路:(草稿纸冲冲冲)

                    

    有了递推式,矩阵快速幂就好了

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long ll;
     4 typedef unsigned long long ull;
     5 #define INF 0X3f3f3f3f
     6 const ll MAXN = 4;
     7 const ll mod = 1e9 + 7;
     8 //矩阵的大小 模数
     9 ll n;
    10 struct MAT
    11 {
    12     ll mat[MAXN][MAXN];
    13     MAT operator*(const MAT &a) const
    14     {
    15         //重载矩阵乘法
    16         MAT b;
    17         memset(b.mat, 0, sizeof(b.mat));
    18         for (int i = 0; i < MAXN; i++)
    19         {
    20             for (int j = 0; j < MAXN; j++)
    21             {
    22                 for (int k = 0; k < MAXN; k++)
    23                     b.mat[i][j] = (b.mat[i][j] + mat[i][k] * a.mat[k][j]);
    24                 b.mat[i][j] += mod;
    25                 b.mat[i][j] %= mod;
    26             }
    27         }
    28         return b;
    29     }
    30 } start, ans;
    31 MAT Mqpow(MAT base, ll b)
    32 {
    33     MAT r;
    34     memset(r.mat, 0, sizeof(r.mat));
    35     r.mat[0][0] = 1, r.mat[1][0] = 5, r.mat[2][0] = 11, r.mat[3][0] = 36;
    36     //初始状态
    37     while (b)
    38     {
    39         if (b & 1)
    40             r = base * r;
    41         base = base * base;
    42         b >>= 1;
    43     }
    44     return r;
    45 }
    46 int main()
    47 {
    48 
    49     start.mat[0][0] = 0, start.mat[0][1] = 1, start.mat[0][2] = 0, start.mat[0][3] = 0;
    50     start.mat[1][0] = 0, start.mat[1][1] = 0, start.mat[1][2] = 1, start.mat[1][3] = 0;
    51     start.mat[2][0] = 0, start.mat[2][1] = 0, start.mat[2][2] = 0, start.mat[2][3] = 1;
    52     start.mat[3][0] = -1, start.mat[3][1] = 1, start.mat[3][2] = 5, start.mat[3][3] = 1;
    53     //建立转移矩阵
    54     ll f[5] = {0, 1, 5, 11, 36};
    55     while (~scanf("%lld", &n))
    56     {
    57         if (n <= 4)
    58             printf("%lld
    ", f[n] % mod);
    59         else
    60             printf("%lld
    ", Mqpow(start, n - 4).mat[3][0]);
    61     }
    62     return 0;
    63 }
  • 相关阅读:
    游戏中心 & 内购
    使用storyboard显示UITableView时,如果不修改系统默认生成的tableView:cellForRowAtIndexPath:方法中的代码,则必须为UITableViewCell注册(填写)重用标识符:identifier.必须要代码方法中的标识符一致.
    《Linux就该这么学》学习记录
    《CSS世界》学习记录
    2019年书摘汇总
    《花间集》书摘
    《小山词》书摘
    《云边有个小卖部》书摘
    《喜宝》书摘
    《夏摩山谷》书摘
  • 原文地址:https://www.cnblogs.com/graytido/p/10885103.html
Copyright © 2011-2022 走看看