把朱老师拉着画了半天
利用正弦定理判断一个点是否是否在五角星内,相对于五角星中心的四个象限特判一下来修改角度,把角度都转化成最上面的角,就差不多了,没仔细调整五角星位置,很丑
当然其实也有更方便的方法,我们可以通过转角度,把当前点通过不断旋转的方法转到五角星上面的一个角内,这种方法同样适用于N角星
#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
//clock_t c1 = clock();
//std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 1e6 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
int vis[MAXN];
int a[MAXN];
int main()
{
double Y = 300, X = 100;
double c = 180.0 / pi;
for (int i = Y; i >=1; i--)
{
for (int j = 2 * Y; j>=1 ; j--)
{
double y = i, x = j / 2;
x -= X;
y -= X;
if (y == 0)
y -= 0.01;
double p; //与中心连线与y轴角度
double r = sqrt(x * x + y * y); //到中心距离
if (x > 0 && y > 0)
p = atan(x / y) * c;
else if (x >= 0 && y < 0)
p = 180 + atan(x / y) * c;
else if (x <= 0 && y >= 0)
p = -atan(x / y) * c;
else
p = 180 - atan(x / y) * c;
if (p >= 36 && p <= 108)
p = fabs(p - 72.0);
else if (p > 108)
p = fabs(144.0 - p);
double t = (180 - 18 - p) / 180 * pi;
if (r / sin(18 * pi / 180) <= X / sin(t))
putchar('*');
else
putchar('.');
}
puts("");
}
return 0;
}
大概就长这样吧