zoukankan      html  css  js  c++  java
  • P4173 残缺的字符串(FFT字符串匹配)

    P4173 残缺的字符串(FFT字符串匹配)
    P4173

    解题思路:

    经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为(P(x)=sum^{m-1}_{i=0}[A(m-1-i)-B(x-(m-1-i))]^2A(m-1-i)B(x-(m-1-i))]),展开之后化简为(P(x)=sum_{i+j=x}A^3(i)B(j)-2sum_{i+j=x}A^2(i)B^2(j)+sum_{i+j=x}A(i)B^3(j))
    做三次FFT即可,然后交题就出了一堆玄学错误

    #include <bits/stdc++.h>
    using namespace std;
    /*    freopen("k.in", "r", stdin);
        freopen("k.out", "w", stdout); */
    //clock_t c1 = clock();
    //std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #define de(a) cout << #a << " = " << a << endl
    #define rep(i, a, n) for (int i = a; i <= n; i++)
    #define per(i, a, n) for (int i = n; i >= a; i--)
    typedef long long ll;
    typedef unsigned long long ull;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    typedef vector<int, int> VII;
    #define inf 0x3f3f3f3f
    const ll INF = 0x3f3f3f3f3f3f3f3f;
    const ll MAXN = 2e6 + 10;
    const ll MAXM = 5e6 + 7;
    const ll MOD = 1e9 + 7;
    const double eps = 1e-6;
    const double pi = acos(-1.0);
    struct Complex
    {
        double x, y;
        Complex(double xx = 0, double yy = 0) { x = xx, y = yy; }
    } a[MAXN], b[MAXN], c[MAXN];
    Complex operator+(Complex a, Complex b) { return Complex(a.x + b.x, a.y + b.y); }
    Complex operator-(Complex a, Complex b) { return Complex(a.x - b.x, a.y - b.y); }
    Complex operator*(Complex a, Complex b) { return Complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } //不懂的看复数的运算那部分
    int l = 0, r[MAXN];
    int limit = 1;
    void FFT(Complex *A, int type)
    {
        for (int i = 0; i < limit; i++)
            if (i < r[i])
                swap(A[i], A[r[i]]); //求出要迭代的序列
        for (int mid = 1; mid < limit; mid <<= 1)
        {                                                    //待合并区间的长度的一半
            Complex Wn(cos(pi / mid), type * sin(pi / mid)); //单位根
            for (int R = mid << 1, j = 0; j < limit; j += R)
            {                    //R是区间的长度,j表示前已经到哪个位置了
                Complex w(1, 0); //幂
                for (int k = 0; k < mid; k++, w = w * Wn)
                {                                                 //枚举左半部分
                    Complex x = A[j + k], y = w * A[j + mid + k]; //蝴蝶效应
                    A[j + k] = x + y;
                    A[j + mid + k] = x - y;
                }
            }
        }
       /*  if (type == -1)
            for (int i = 0; i < limit; i++)
                a[i].x /= limit; */
    }
    char s[MAXN], t[MAXN];
    int ta[MAXN] = {0}, tb[MAXN] = {0};
    int ans[MAXN] = {0};
    int main()
    {
        int n, m;
        scanf("%d%d%s%s", &m, &n, t, s);
        for (int i = 0; i < m; i++)
            ta[m - i - 1] = t[i] == '*' ? 0 : (t[i] - 'a' + 1);
        for (int i = 0; i < n; i++)
            tb[i] = s[i] == '*' ? 0 : (s[i] - 'a' + 1);
        while (limit <= m + n)
            limit <<= 1, l++;
        for (int i = 0; i < limit; i++)
            r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
        for (int i = 0; i < limit; i++)
        {
            a[i] = Complex(ta[i], 0);
            b[i] = Complex(tb[i] * tb[i] * tb[i], 0);
        }
        FFT(a, 1), FFT(b, 1);
        for (int i = 0; i < limit; i++)
            c[i] = c[i] + a[i] * b[i];
        for (int i = 0; i < limit; i++)
        {
            a[i] = Complex(ta[i] * ta[i], 0);
            b[i] = Complex(tb[i] * tb[i], 0);
        }
        FFT(a, 1), FFT(b, 1);
        for (int i = 0; i < limit; i++)
            c[i] = c[i] - a[i] * b[i] * Complex(2.0, 0);
        for (int i = 0; i < limit; i++)
        {
            a[i] = Complex(ta[i] * ta[i] * ta[i], 0);
            b[i] = Complex(tb[i], 0);
        }
        FFT(a, 1), FFT(b, 1);
        for (int i = 0; i < limit; i++)
            c[i] = c[i] + a[i] * b[i];
        FFT(c, -1);
        int cnt = 0;
        for (int i = m - 1; i < n; i++)
        {
            if (int(c[i].x / limit + 0.5) == 0)
                ans[cnt++] = i - m + 2;
        }
        printf("%d
    ", cnt);
        for (int i = 0; i < cnt; i++)
            printf("%d ", ans[i]);
        printf("
    ");
        return 0;
    }
    
  • 相关阅读:
    bootstrap学习笔记一: bootstrap初认识,hello bootstrap(下)
    bootstrap学习笔记一: bootstrap初认识,hello bootstrap(上)
    AutoCompleteTextView的使用
    常用的android弹出对话框
    PopupWindow的使用
    linux udev、mdev 介绍
    linux 守护进程编程
    linux 下的文件目录操作之遍历目录
    linux 下查找图片文件方法
    linux 内核 zImage 生成过程分析
  • 原文地址:https://www.cnblogs.com/graytido/p/11785326.html
Copyright © 2011-2022 走看看