zoukankan      html  css  js  c++  java
  • 法里数列

    定义:

    数学上,n阶的法里数列是0和1之间最简分数的数列,由小至大排列,每个分数的分母不大于n

    (F(1)={frac{0}{1},frac{1}{1}})

    (F(2)={frac{0}{1},frac{1}{2},frac{1}{1}})

    (F(3)={frac{0}{1},frac{1}{3},frac{1}{2},frac{2}{3},frac{1}{1}})

    (F(4)={frac{0}{1},frac{1}{4},frac{1}{3},frac{1}{2},frac{2}{3},frac{3}{4},frac{1}{1}})

    (F(5)={frac{0}{1},frac{1}{5},frac{1}{4},frac{1}{3},frac{2}{5},frac{1}{2},frac{3}{5},frac{2}{3},frac{3}{4},frac{4}{5},frac{1}{1}})

    性质:

    n阶的法里数列包(F_n)包含了较低阶法里数列的全部项,特别是包含了(F_{n-1})的全部项以及与(n)互质的每个数的相应分数,所以(F_n)(F_{n-1})的长度的关系,可以用欧拉函数(varphi(n))描述:

    (|F_n|=|F_{n-1}|+varphi(n))

    (|F_1|=2)可得

    (|F_n|=1+sumlimits_{i=1}^{n}varphi(i))

    (|F_n|)的渐进行为是:

    (|F_n|=frac{3n^2}{pi^2})

    关于数列相邻项

    (frac{a}{b})(frac{c}{d})是法里数列的邻项,且(frac{a}{b}<frac{c}{d}),那么他们之差是(frac{1}{bd}),即(bc-ad=1)

    逆命题同样成立,若(bc-ad=1),其中(a,b,c)(d)为正整数,及有(a<b,c<d)(frac{a}{b})(frac{c}{d})在阶为(max(d,b))的法里数列中是邻项​

    如何生成n阶的法雷序列:

    利用Stern Brocot Tree生成

    #include <bits/stdc++.h>
    #include <ext/pb_ds/assoc_container.hpp>
    #include <ext/pb_ds/hash_policy.hpp>
    #include <ext/pb_ds/tree_policy.hpp>
    #include <ext/pb_ds/trie_policy.hpp>
    using namespace __gnu_pbds;
    using namespace std;
    // freopen("k.in", "r", stdin);
    // freopen("k.out", "w", stdout);
    // clock_t c1 = clock();
    // std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    mt19937 rnd(time(NULL));
    #define de(a) cout << #a << " = " << a << endl
    #define rep(i, a, n) for (int i = a; i <= n; i++)
    #define per(i, a, n) for (int i = n; i >= a; i--)
    #define ls ((x) << 1)
    #define rs ((x) << 1 | 1)
    typedef long long ll;
    typedef unsigned long long ull;
    typedef pair<int, int> PII;
    typedef pair<double, double> PDD;
    typedef pair<char, char> PCC;
    typedef pair<ll, ll> PLL;
    typedef vector<int> VI;
    #define inf 0x3f3f3f3f
    const ll INF = 0x3f3f3f3f3f3f3f3f;
    const ll MAXN = 1e3 + 7;
    const ll MAXM = 4e5 + 7;
    const ll MOD = 1e9 + 7;
    const double eps = 1e-7;
    const double pi = acos(-1.0);
    struct Stern_Brocot_Tree
    {
        int n;
        vector<PII> SB_Tree;
        void init(int x)
        {
            n = x;
            vector<PII>().swap(SB_Tree);
            SB_Tree.emplace_back(0, 1);
        }
        void dfs(int l1, int l2, int r1, int r2)
        {
            if (l2 + r2 > n)
                return;
            dfs(l1, l2, l1 + r1, l2 + r2);
            SB_Tree.emplace_back(l1 + r1, l2 + r2);
            dfs(l1 + r1, l2 + r2, r1, r2);
        }
        void Build() //构造n阶法雷数列
        {
            dfs(0, 1, 1, 1);
            SB_Tree.emplace_back(1, 1);
        }
    
    } SBT;
    int main()
    {
        SBT.init(5);
        SBT.Build();
        for (auto i : SBT.SB_Tree)
            printf("%d/%d ", i.first, i.second);
        puts("");
        return 0;
    }
    
  • 相关阅读:
    vsftpd不支持目录软链接的解决办法
    SVN添加忽略目录
    Mysql 默认编码问题
    php-fpm 信号
    基于MAVEN使用IDEA创建dubbo入门项目图文教程
    taotao商城遇到的问题
    git push后出错
    Mybatis逆向工程自动生成代码(Ubuntu18.04-idea环境)
    git add.后回退 代码丢失
    对象的共享
  • 原文地址:https://www.cnblogs.com/graytido/p/13689669.html
Copyright © 2011-2022 走看看