题目描述
(A)国有(n)座城市,编号从(1)到(n),城市之间有(m)条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有(q)辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
输入输出格式
输入格式:
第一行有两个用一个空格隔开的整数(n,m)表示(A)国有(n)座城市和(m)条道路。
接下来(m)行每行(3)个整数(x, y, z),每两个整数之间用一个空格隔开,表示从(x)号城市到(y)号城市有一条限重为(z)的道路。注意: x不等于y,两座城市之间可能有多条道路 。
接下来一行有一个整数(q),表示有(q)辆货车需要运货。
接下来(q)行,每行两个整数(x、y),之间用一个空格隔开,表示一辆货车需要从 (x) 城市运输货物到 (y) 城市,注意: x 不等于 y 。
输出格式:
共有(q)行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出(-1)。
输入输出样例
输入样例#1:
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
输出样例#1:
3
-1
3
说明
对于(30\%)的数据,(0 < n < 1,000,0 < m < 10,000,0 < q< 1,000);
对于60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q< 1,000;
对于100%的数据,(0 < n < 10,000,0 < m < 50,000,0 < q< 30,000,0 ≤ z ≤ 100,000).
思路:想出来最大生成树+LCA这道题就基本没什么问题了,就是先跑一遍最大生产树,然后建边,之后在求LCA的过程中记录最小值,然后val数组跟f数组一起更新。然后就完了……
代码:
#include<cstdio>
#include<algorithm>
#define maxn 10007
using namespace std;
int head[maxn],n,m,fa[maxn],f[maxn][22],p,x,y,num,d[maxn],val[maxn][22];
bool vis[maxn];
struct node {
int v,w,nxt;
}e[100007];
struct Edge {
int u,v,w;
}a[100007];
inline void ct(int u, int v, int w) {
e[++num].v=v;
e[num].w=w;
e[num].nxt=head[u];
head[u]=num;
}
inline int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
inline bool cmp(Edge a,Edge b) {return a.w>b.w;}
void dfs(int u) {
vis[u]=1;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(!vis[v]) {
d[v]=d[u]+1;
f[v][0]=u;
val[v][0]=e[i].w;
dfs(v);
}
}
}
inline int lca(int a, int b) {
if(find(a)!=find(b)) return -1;
int ans=1020040222;
if(d[a]>d[b]) swap(a,b);
for(int i=20;i>=0;--i)
if(d[a]<=d[b]-(1<<i)) ans=min(ans,val[b][i]),b=f[b][i];
if(a==b) return ans;
for(int i=20;i>=0;--i)
if(f[a][i]!=f[b][i]) {
ans=min(ans,min(val[a][i],val[b][i]));
a=f[a][i],b=f[b][i];
}
ans=min(ans,min(val[a][0],val[b][0]));
return ans;
}
int main() {
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i) scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a+1,a+1+m,cmp);
for(int i=1;i<=n;++i) fa[i]=i;
for(int i=1;i<=m;++i) {
int x=a[i].u,y=a[i].v;
x=find(x),y=find(y);
if(x!=y) {
fa[x]=y;
ct(a[i].u,a[i].v,a[i].w);ct(a[i].v,a[i].u,a[i].w);
}
}
for(int i=1;i<=n;++i) {
if(!vis[i]) {
d[i]=1;
dfs(i);
val[i][0]=1020040222;
f[i][0]=1;
}
}
for(int j=1;j<=20;++j)
for(int i=1;i<=n;++i)
f[i][j]=f[f[i][j-1]][j-1],val[i][j]=min(val[i][j-1],val[f[i][j-1]][j-1]);
scanf("%d",&p);
while(p--) {
scanf("%d%d",&x,&y);
printf("%d
",lca(x,y));
}
return 0;
}