题目描述
有一棵点数为 (N) 的树,以点 (1) 为根,且树点有边权。然后有(M) 个操作,分为三种:
操作 (1) :把某个节点 (x) 的点权增加 (a) 。
操作 (2) :把某个节点 (x) 为根的子树中所有点的点权都增加 (a)。
操作 (3) :询问某个节点 (x) 到根的路径中所有点的点权和。
输入输出格式
输入格式:
第一行包含两个整数 (N), (M) 。表示点数和操作数。
接下来一行 (N) 个整数,表示树中节点的初始权值。
接下来 (N-1) 行每行两个正整数 (from), (to) , 表示该树中存在一条边 ((from), (to)) 。
再接下来 (M) 行,每行分别表示一次操作。其中第一个数表示该操作的种类( (1-3) ) ,之后接这个操作的参数( (x) 或者 (x) (a) ) 。
输出格式:
对于每个询问操作,输出该询问的答案。答案之间用换行隔开。
输入输出样例
输入样例#1:
5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
输出样例#1:
6
9
13
说明
对于 (100\%) 的数据, (N,M leq 100000),且所有输入数据的绝对值都不会超过 (10^6) 。
思路:这道题跟洛谷(P3384)的唯一区别在于这里是单点修改,上面说过,区间修改包括单点修改,所以,可是说是一点区别都没有,就是打一遍加深一下对树剖的印象。
代码:
#include<cstdio>
#include<algorithm>
#include<cctype>
#define maxn 100007
#define ll long long
#define ls rt<<1
#define rs rt<<1|1
using namespace std;
int head[maxn],d[maxn],a[maxn];
int num,cnt,n,m,fa[maxn],id[maxn];
int w[maxn],top[maxn],size[maxn],son[maxn];
ll lazy[maxn<<2],sum[maxn<<2],y;
inline ll qread() {
char c=getchar();ll num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
struct node {
int v,nxt;
}e[maxn<<1];
inline void ct(int u, int v) {
e[++num].v=v;
e[num].nxt=head[u];
head[u]=num;
}
inline void pushup(int rt) {
sum[rt]=sum[ls]+sum[rs];
}
void build(int rt, int l, int r) {
if(l==r) {
sum[rt]=a[l];
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(rt);
}
inline void pushdown(int rt, int len) {
if(lazy[rt]) {
lazy[ls]+=lazy[rt];
lazy[rs]+=lazy[rt];
sum[ls]+=(len-(len>>1))*lazy[rt];
sum[rs]+=(len>>1)*lazy[rt];
lazy[rt]=0;
}
}
void modify(int rt, int l, int r, int L, int R, ll val) {
if(L>r||R<l) return;
if(L<=l&&r<=R) {
sum[rt]+=val*(r-l+1);
lazy[rt]+=val;
return;
}
int mid=(l+r)>>1;
pushdown(rt,r-l+1);
modify(ls,l,mid,L,R,val),modify(rs,mid+1,r,L,R,val);
pushup(rt);
}
ll csum(int rt, int l, int r, int L, int R) {
if(L>r||R<l) return 0;
if(L<=l&&r<=R) return sum[rt];
int mid=(l+r)>>1;
pushdown(rt,r-l+1);
return csum(ls,l,mid,L,R)+csum(rs,mid+1,r,L,R);
}
void dfs1(int u, int f) {
size[u]=1;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=f) {
d[v]=d[u]+1;
fa[v]=u;
dfs1(v,u);
size[u]+=size[v];
if(size[v]>size[son[u]]) son[u]=v;
}
}
}
void dfs2(int u, int t) {
id[u]=++cnt;
a[cnt]=w[u];
top[u]=t;
if(son[u]) dfs2(son[u],t);
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
ll calc(int x, int y) {
ll ans=0;
int fx=top[x],fy=top[y];
while(fx!=fy) {
if(d[fx]<d[fy]) swap(x,y),swap(fx,fy);
ans+=csum(1,1,cnt,id[fx],id[x]);
x=fa[fx],fx=top[x];
}
if(id[x]>id[y]) swap(x,y);
ans+=csum(1,1,cnt,id[x],id[y]);
return ans;
}
int main() {
n=qread(),m=qread();
for(int i=1;i<=n;++i) w[i]=qread();
for(int i=1,u,v;i<n;++i) {
u=qread(),v=qread();
ct(u,v);ct(v,u);
}
d[1]=1,fa[1]=1;
dfs1(1,0);dfs2(1,1);build(1,1,n);
for(int i=1,k,x;i<=m;++i) {
k=qread();
if(k==1) {
x=qread(),y=qread();
modify(1,1,n,id[x],id[x],y);
}
if(k==2) {
x=qread(),y=qread();
modify(1,1,n,id[x],id[x]+size[x]-1,y);
}
if(k==3) {
x=qread();
printf("%lld
",calc(1,x));
}
}
return 0;
}