zoukankan      html  css  js  c++  java
  • Codeforces 492B

    Vanya walks late at night along a straight street of length l, lit by n lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point l. Then the i-th lantern is at the point ai. The lantern lights all points of the street that are at the distance of at most d from it, where d is some positive number, common for all lanterns.

    Vanya wonders: what is the minimum light radius d should the lanterns have to light the whole street?

    Input

    The first line contains two integers n, l (1 ≤ n ≤ 1000, 1 ≤ l ≤ 109) — the number of lanterns and the length of the street respectively.

    The next line contains n integers ai (0 ≤ ai ≤ l). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street.

    Output

    Print the minimum light radius d, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn’t exceed 10 - 9.

    Sample Input
    Input

    7 15
    15 5 3 7 9 14 0

    Output

    2.5000000000

    Input

    2 5
    2 5

    Output

    2.0000000000

    Hint

    Consider the second sample. At d = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.

    题意:第一行输入 灯数量 与 街道长度。

    第二行输入 这些灯的位置。

    求能够点亮整条街道的灯最小半径。

    主要还是需要考虑..想清楚再写代码233333注意输出的精度要求!!!精度!!!

    #include<iostream>
    #include<algorithm>
    using namespace std;
    
    int main()
    {
        int n,l;
        int a[1005];
        while(scanf("%d%d",&n,&l)!=EOF)
        {
            for(int i=0;i<n;i++) scanf("%d",&a[i]);
            sort(a,a+n);
            double ans=max(a[0],l-a[n-1]);
            for(int i=1;i<n;i++)
            {
                ans=max(ans,(a[i]-a[i-1])/2.0);
            }
            printf("%.10lf
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    BufferedOutputStream
    BufferedInputStream
    IO异常 的处理
    FileOutStream
    FileInputStream
    File常用的方法
    IO流
    枚举
    jdk1.5新特性之-----自动装箱与自动拆箱
    jdk1.5新特性之------->可变参数
  • 原文地址:https://www.cnblogs.com/greenaway07/p/10420053.html
Copyright © 2011-2022 走看看