zoukankan      html  css  js  c++  java
  • Torchkeras,一个源码不足300行的深度学习框架

    Torchkeras

    Keras vs. Tensorflow vs. Pytorch
    了解过深度学习框架的都知道,Tensorflow是早期的主流框架,而后又出现了Keras,keras对Tensorflow进行了封装,使得搭建深度学模型的过程简化到了几个简单的步骤:summary、compile、fit、evaluate、 predict。Pytorch虽然比Tensorflow出现的晚,但是其在框架的实现方式上,更为优雅,可以很好的与Python的原生编程思维结合起来,因此越来越多的人开始转向Pytorch。开发的过程就是不断模块化的过程,Torchkeras便是这一原则下的产物,它将Pytorch进行了封装,使得利用Pytorch搭建深度学模型的过程也可以像Keras那样,并且非常的灵活。

    源码

    # -*- coding: utf-8 -*-
    import os
    import datetime
    import numpy as np 
    import pandas as pd 
    import torch
    from collections import OrderedDict
    from prettytable import PrettyTable
    
    __version__ = "1.5.3"
    
    #On macOs, run pytorch and matplotlib at the same time in jupyter should set this.
    os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" 
    
    # Some modules do the computation themselves using parameters or the parameters of children, treat these as layers
    layer_modules = (torch.nn.MultiheadAttention, )
    
    def summary(model, input_shape, input_dtype = torch.FloatTensor, batch_size=-1,
                layer_modules = layer_modules,*args, **kwargs):
        def register_hook(module):
            def hook(module, inputs, outputs):
                
                class_name = str(module.__class__).split(".")[-1].split("'")[0]
                module_idx = len(summary)
    
                key = "%s-%i" % (class_name, module_idx + 1)
    
                info = OrderedDict()
                info["id"] = id(module)
                if isinstance(outputs, (list, tuple)):
                    try:
                        info["out"] = [batch_size] + list(outputs[0].size())[1:]
                    except AttributeError:
                        # pack_padded_seq and pad_packed_seq store feature into data attribute
                        info["out"] = [batch_size] + list(outputs[0].data.size())[1:]
                else:
                    info["out"] = [batch_size] + list(outputs.size())[1:]
    
                info["params_nt"], info["params"] = 0, 0 
                for name, param in module.named_parameters():
                    info["params"] += param.nelement() * param.requires_grad
                    info["params_nt"] += param.nelement() * (not param.requires_grad)
    
                # if the current module is already-used, mark as "(recursive)"
                # check if this module has params
                if list(module.named_parameters()):
                    for v in summary.values():
                        if info["id"] == v["id"]:
                            info["params"] = "(recursive)"
    
                summary[key] = info
    
            # ignore Sequential and ModuleList and other containers
            if isinstance(module, layer_modules) or not module._modules:
                hooks.append(module.register_forward_hook(hook))
    
        hooks = []
        summary = OrderedDict()
    
        model.apply(register_hook)
        
        # multiple inputs to the network
        if isinstance(input_shape, tuple):
            input_shape = [input_shape]
            
        # batch_size of 2 for batchnorm
        x = [torch.rand(2, *size).type(input_dtype) for size in input_shape]
        # print(type(x[0]))
        
        try:
            with torch.no_grad():
                model(*x) if not (kwargs or args) else model(*x, *args, **kwargs)
        except Exception:
            # This can be usefull for debugging
            print("Failed to run torchkeras.summary...")
            raise
        finally:
            for hook in hooks:
                hook.remove()
                
        print("----------------------------------------------------------------")
        line_new = "{:>20}  {:>25} {:>15}".format("Layer (type)", "Output Shape", "Param #")
        print(line_new)
        print("================================================================")
        total_params = 0
        total_output = 0
        trainable_params = 0
        for layer in summary:
            # layer, output_shape, params
            line_new = "{:>20}  {:>25} {:>15}".format(
                layer,
                str(summary[layer]["out"]),
                "{0:,}".format(summary[layer]["params"]+summary[layer]["params_nt"])
            )
            total_params += (summary[layer]["params"]+summary[layer]["params_nt"])
            total_output += np.prod(summary[layer]["out"])
            trainable_params += summary[layer]["params"]
            print(line_new)
    
        # assume 4 bytes/number
        total_input_size = abs(np.prod(input_shape) * batch_size * 4. / (1024 ** 2.))
        total_output_size = abs(2. * total_output * 4. / (1024 ** 2.))  # x2 for gradients
        total_params_size = abs(total_params * 4. / (1024 ** 2.))
        total_size = total_params_size + total_output_size + total_input_size
    
        print("================================================================")
        print("Total params: {0:,}".format(total_params))
        print("Trainable params: {0:,}".format(trainable_params))
        print("Non-trainable params: {0:,}".format(total_params - trainable_params))
        print("----------------------------------------------------------------")
        print("Input size (MB): %0.6f" % total_input_size)
        print("Forward/backward pass size (MB): %0.6f" % total_output_size)
        print("Params size (MB): %0.6f" % total_params_size)
        print("Estimated Total Size (MB): %0.6f" % total_size)
        print("----------------------------------------------------------------")
    
    
    class Model(torch.nn.Module):
        
        # print time bar...
        @staticmethod
        def print_bar(): 
            nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            print("
    "+"="*80 + "%s"%nowtime)
            
        def __init__(self,net = None):
            super(Model, self).__init__()
            self.net = net
    
        def forward(self,x):
            if self.net:
                return self.net.forward(x)
            else:
                raise NotImplementedError
        
        def compile(self, loss_func, 
                   optimizer=None, metrics_dict=None,device = None):
            self.loss_func = loss_func
            self.optimizer = optimizer if optimizer else torch.optim.Adam(self.parameters(),lr = 0.001)
            self.metrics_dict = metrics_dict if metrics_dict else {}
            self.history = {}
            self.device = device if torch.cuda.is_available() else None
            if self.device:
                self.to(self.device)
            
    
        def summary(self,input_shape,input_dtype = torch.FloatTensor, batch_size=-1 ):
            summary(self,input_shape,input_dtype,batch_size)
        
        def train_step(self, features, labels):  
               
            self.train()
            self.optimizer.zero_grad()
            if self.device:
                features = features.to(self.device)
                labels = labels.to(self.device)
    
            # forward
            predictions = self.forward(features)
            loss = self.loss_func(predictions,labels)
            
            # evaluate metrics
            train_metrics = {"loss":loss.item()}
            for name,metric_func in self.metrics_dict.items():
                train_metrics[name] = metric_func(predictions,labels).item()
    
            # backward
            loss.backward()
    
            # update parameters
            self.optimizer.step()
            self.optimizer.zero_grad()
            
            return train_metrics
        
        @torch.no_grad()
        def evaluate_step(self, features,labels):
            
            self.eval()
            
            if self.device:
                features = features.to(self.device)
                labels = labels.to(self.device)
                
            with torch.no_grad():
                predictions = self.forward(features)
                loss = self.loss_func(predictions,labels)
            
            val_metrics = {"val_loss":loss.item()}
            for name,metric_func in self.metrics_dict.items():
                val_metrics["val_"+name] = metric_func(predictions,labels).item()
                
            return val_metrics
            
        
        def fit(self,epochs,dl_train,dl_val = None,log_step_freq = 1):
            
            print("Start Training ...")
            Model.print_bar()
            
            dl_val = dl_val if dl_val else []
            
            for epoch in range(1,epochs+1):
                
                # 1,training loop -------------------------------------------------
                
                train_metrics_sum, step = {}, 0
                for features,labels in dl_train:
                    step = step + 1
                    train_metrics = self.train_step(features,labels)
        
                    for name,metric in train_metrics.items():
                        train_metrics_sum[name] = train_metrics_sum.get(name,0.0)+metric
                        
                    if step%log_step_freq == 0:   
                        logs = {"step":step}
                        logs.update({k:round(v/step,3) for k,v in train_metrics_sum.items()})
                        print(logs)
                    
                for name,metric_sum in train_metrics_sum.items():
                    self.history[name] = self.history.get(name,[])+[metric_sum/step]
                    
                    
                # 2,validate loop -------------------------------------------------
    
                val_metrics_sum, step = {}, 0
                for features,labels in dl_val:
                    step = step + 1
                    val_metrics = self.evaluate_step(features,labels)
                    for name,metric in val_metrics.items():
                        val_metrics_sum[name] = val_metrics_sum.get(name,0.0)+metric
                for name,metric_sum in val_metrics_sum.items():
                    self.history[name] = self.history.get(name,[])+[metric_sum/step]
                    
                # 3,print logs -------------------------------------------------
                
                infos = {"epoch":epoch}
                infos.update({k:round(self.history[k][-1],3) for k in self.history})
                tb = PrettyTable()
                tb.field_names = infos.keys()
                tb.add_row(infos.values())
                print("
    ",tb)
                Model.print_bar()
            
            print("Finished Training...")
                
            return pd.DataFrame(self.history)
        
        @torch.no_grad()
        def evaluate(self,dl_val):
            self.eval()
            val_metrics_list = {}
            for features,labels in dl_val:
                val_metrics = self.evaluate_step(features,labels)
                for name,metric in val_metrics.items():
                    val_metrics_list[name] = val_metrics_list.get(name,[])+[metric]
            
            return {name:np.mean(metric_list) for name,metric_list in val_metrics_list.items()}
        
        @torch.no_grad()
        def predict(self,dl):
            self.eval()
            if self.device:
                result = torch.cat([self.forward(t[0].to(self.device)) for t in dl])
            else:
                result = torch.cat([self.forward(t[0]) for t in dl])
            return(result.data)
    
    

    使用教程

  • 相关阅读:
    echars柱状图修改每条柱的颜色
    vue打开到新页面,并传递参数
    彻底了解websocket原理
    bind和on的区别
    Vue如何更新子组件
    Vue父子组件生命过程
    使用css3实现动画来开启GPU加速
    前端技术体系
    Vue中的~(静态资源处理)
    垂直居中的办法小结
  • 原文地址:https://www.cnblogs.com/gshang/p/13544553.html
Copyright © 2011-2022 走看看