pickle的序列化规则
Python规范(Python-specific)提供了pickle的序列化规则。这就不必担心不同版本的Python之间序列化兼容性问题。默认情况下,pickle的序列化是基于文本的,我们可以直接用文本编辑器查看序列化的文本。我们也可以序列成二进制格式的数据,这样的结果体积会更小。更详细的内容,可以参考Python手册pickle模块。
下面就开始使用pickle吧~
pickle.dump(obj, file[, protocol])
序列化对象,并将结果数据流写入到文件对象中。参数protocol是序列化模式,默认值为0,表示以文本的形式序列化。protocol的值还可以是1或2,表示以二进制的形式序列化。
pickle.load(file)
反序列化对象。将文件中的数据解析为一个Python对象。下面通过一个简单的例子来演示上面两个方法的使用:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
#coding=gbk
import pickle, StringIO
class Person(object):
'''自定义类型。
'''
def __init__(self, name, address):
self.name = name
self.address = address
def display(self):
print 'name:', self.name, 'address:', self.address
jj = Person("JGood", "中国 杭州")
jj.display()
file = StringIO.StringIO()
pickle.dump(jj, file, 0) #序列化
#print file.getvalue() #打印序列化后的结果
#del Person #反序列的时候,必须能找到对应类的定义。否则反序列化操作失败。
file.seek(0)
jj1 = pickle.load(file) #反序列化
jj1.display()
file.close()
|
注意:在反序列化的时候,必须能找到对应类的定义,否则反序列化将失败。在上面的例子中,如果取消#del Person的注释,在运行时将抛AttributeError异常,提示当前模块找不到Person的定义。
pickle.dumps(obj[, protocol])
pickle.loads(string)
我们也可以直接获取序列化后的数据流,或者直接从数据流反序列化。方法dumps与loads就完成这样的功能。dumps返回序列化后的数据流,loads返回的序列化生成的对象。
python模块中还定义了两个类,分别用来序列化、反序列化对象。
class pickle.Pickler(file[, protocal]):
该类用于序列化对象。参数file是一个类文件对象(file-like object),用于保存序列化结果。可选参数表示序列化模式。它定义了两个方法:
dump(obj):
将对象序列化,并保存到类文件对象中。参数obj是要序列化的对象。
clear_memo()
清空pickler的“备忘”。使用Pickler实例在序列化对象的时候,它会“记住”已经被序列化的对象引用,所以对同一对象多次调用dump(obj),pickler不会“傻傻”的去多次序列化。下面是一个简单的例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#coding=gbk
import pickle, StringIO
class Person(object):
'''自定义类型。
'''
def __init__(self, name, address):
self.name = name
self.address = address
def display(self):
print 'name:', self.name, 'address:', self.address
fle = StringIO.StringIO()
pick = pickle.Pickler(fle)
person = Person("JGood", "Hangzhou China")
pick.dump(person)
val1 = fle.getvalue()
print len(val1)
pick.clear_memo() #注释此句,再看看运行结果
pick.dump(person) #对同一引用对象再次进行序列化
val2 = fle.getvalue()
print len(val2)
#---- 结果 ----
#148
#296
#
#将这行代码注释掉:pick.clear_memo()
#结果为:
#148
#152
|
class pickle.Unpickler(file):
该类用于反序列化对象。参数file是一个类文件(file-like object)对象,Unpickler从该参数中获取数据进行反序列化。
load():
反序列化对象。该方法会根据已经序列化的数据流,自动选择合适的反序列化模式。
1
2
3
4
5
|
#.... 接上个例子中的代码
fle.seek(0)
unpick = pickle.Unpickler(fle)
print unpick.load()
|
上面介绍了pickle模块的基本使用,但和marshal一样,并不是所有的类型都可以通过pickle序列化的。例如对于一个嵌套的类型,使用pickle序列化就失败。例如:
1
2
3
4
5
6
7
8
9
10
11
12
|
class A(object):
class B(object):
def __init__(self, name):
self.name = name
def __init__(self):
print 'init A'
b = A.B("my name")
print b
c = pickle.dumps(b, 0) #失败哦
print pickle.loads(c)
|