zoukankan      html  css  js  c++  java
  • 566. Reshape the Matrix

    题目描述:

    In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new one with different size but keep its original data.

    You're given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and column number of the wanted reshaped matrix, respectively.

    The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were.

    If the 'reshape' operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.

    Example 1:

    Input: 
    nums = 
    [[1,2],
     [3,4]]
    r = 1, c = 4
    Output: 
    [[1,2,3,4]]
    Explanation:
    The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list.

    Example 2:

    Input: 
    nums = 
    [[1,2],
     [3,4]]
    r = 2, c = 4
    Output: 
    [[1,2],
     [3,4]]
    Explanation:
    There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the original matrix.

    Note:

    1. The height and width of the given matrix is in range [1, 100].
    2. The given r and c are all positive.

    解题思路:

    关键点在与原矩阵与转换后矩阵中各个元素的下标转化关系。

    代码:

     1 class Solution {
     2 public:
     3     vector<vector<int>> matrixReshape(vector<vector<int>>& nums, int r, int c) {
     4         if (r*c != nums.size()*nums[0].size())
     5             return nums;
     6         vector<vector<int> > ret (r, vector<int>(c, 0));
     7         for (int i = 0 ; i < r; i ++) {
     8             for (int j = 0; j < c; j++) {
     9                 ret[i][j] = nums[(i*c+j)/nums[0].size()][(i*c+j) - (i*c+j)/nums[0].size()*nums[0].size()];
    10             }
    11         }
    12         return ret;
    13     }
    14 };
  • 相关阅读:
    VIJOS-P1446 最短路上的统计
    洛谷 CF997A Convert to Ones
    USACO Your Ride Is Here
    NOIP 2006 明明的随机数
    NOIP 2008 传球游戏
    数据结构—链表详解
    洛谷 P1160 队列安排
    洛谷 P1167 刷题
    JDOJ 2982: 最大连续子段和问题
    洛谷 P1123 取数游戏
  • 原文地址:https://www.cnblogs.com/gsz-/p/9497329.html
Copyright © 2011-2022 走看看