zoukankan      html  css  js  c++  java
  • BZOJ 4180: 字符串计数 后缀自动机 + 矩阵乘法 + 二分(神题)

    Description

    SD有一名神犇叫做Oxer,他觉得字符串的题目都太水了,于是便出了一道题来虐蒟蒻yts1999。
     
    他给出了一个字符串T,字符串T中有且仅有4种字符 'A', 'B', 'C', 'D'。现在他要求蒟蒻yts1999构造一个新的字符串S,构造的方法是:进行多次操作,每一次操作选择T的一个子串,将其加入S的末尾。
     
    对于一个可构造出的字符串S,可能有多种构造方案,Oxer定义构造字符串S所需的操作次数为所有构造方案中操作次数的最小值。
     
    Oxer想知道对于给定的正整数N和字符串T,他所能构造出的所有长度为N的字符串S中,构造所需的操作次数最大的字符串的操作次数。
     
    蒟蒻yts1999当然不会做了,于是向你求助。
     

    Input

    第一行包含一个整数N,表示要构造的字符串长度。
     
    第二行包含一个字符串T,T的意义如题所述。
     

    Output

    输出文件包含一行,一个整数,为你所求出的最大的操作次数。
     
    题解: 有一个性质:操作次数越多,所能构造出来的最短串一定越长.
    可以二分这个操作次数 $mid$,如果操作 $mid$ 次下所构造出来的最短的串的长度也大于 $n$,那么说明 $[mid+1,r]$ 所能构造出来的最短串的长度也大于 $n$,那么我们就可以把规模缩短到 $[l,mid-1]$
    考虑二分出一个答案后如何检验
    令 $f_{i,j}$ 表示以 $i$ 字符开头的单词后面可以接以 $j$ 字符开头的单词且$i$ 开头单词加上 $j$ 后还不是 $T$ 的子串的最短长度 
    这个可以在后缀自动机上求
    相当于要求一个 以 $i$ 开头的子串,且子串的末尾还没有 $j$ 这条边
    反向更新一下即可
    求出 $f$ 数组后,考虑 $g_{i,j,k}$ 表示以 $i$ 开头,后面加 $j$,一共操作了 $k$ 次的最短长度,则 $g_{i,j,k}=g_{i,m,k-1}+g_{m,j,1}$ 我们发现这个东西可以用矩阵乘法来加速,来一遍矩阵快速幂即可
     
    #include<bits/stdc++.h>
    #define maxn 300000 
    #define inf 2000000000000000000 
    #define ll long long 
    #define setIO(s) freopen(s".in","r",stdin) 
    using namespace std;  
    ll n; 
    char str[maxn];  
    namespace SAM {
    	int last,tot; 
    	int trans[maxn][6], f[maxn], len[maxn], c[maxn], rk[maxn], F[maxn][7];   
    	void init() {  last=tot=1; }
    	void extend(int c) {
    		int np=++tot,p=last; 
    		len[np]=len[p]+1, last=np; 
    		while(p&&!trans[p][c]) trans[p][c]=np,p=f[p];  
    		if(!p) f[np]=1; 
    		else {
    			int q=trans[p][c]; 
    			if(len[q]==len[p]+1) 
    				f[np]=q; 
    			else {
    				int nq=++tot; 
    				len[nq]=len[p]+1; 
    				memcpy(trans[nq], trans[q], sizeof(trans[q])); 
    				f[nq]=f[q], f[np]=f[q]=nq;
    				while(p&&trans[p][c]==q) trans[p][c]=nq,p=f[p];  
    			}
    		}
    	}
    	void prepare() {
    		memset(F,0x3f,sizeof(F));     
    		for(int i=1;i<=tot;++i) ++c[len[i]]; 
    		for(int i=1;i<=tot;++i) c[i]+=c[i-1];      
    		for(int i=1;i<=tot;++i) rk[c[len[i]]--]=i;   
    		for(int i=tot;i>=1;--i) {
    			int o=rk[i]; 
    			for(int j=0;j<4;++j) {
    				if(!trans[o][j]) F[o][j]=1;   
    				for(int k=0;k<4;++k) 
    					F[o][j]=min(F[o][j], F[trans[o][k]][j]+1); 
    			}
    		}
    	}
    }; 
    struct matrix {
    	ll mat[4][4];  
    	void init(ll key) {
    		for(int i=0;i<4;++i) 
    			for(int j=0;j<4;++j) 
    				mat[i][j]=key; 
    	}
    };   
    matrix operator*(matrix a,matrix b) {  
    	matrix c; 
    	c.init(inf);  
    	for(int i=0;i<4;++i) 
    		for(int j=0;j<4;++j) 
    			for(int k=0;k<4;++k)
    				c.mat[i][j]=min(c.mat[i][j], a.mat[i][k] + b.mat[k][j]); 
    	return c; 
    }  
    matrix operator^(matrix base,ll k) {
    	matrix tmp; 
    	tmp.init(0); 
    	while(k){
    		if(k&1) tmp=tmp*base; 
    		base=base*base,k>>=1; 
    	}
    	return tmp; 
    }
    bool check(ll mid) {
    	matrix s; 
    	for(int i=0;i<4;++i) 
    		for(int j=0;j<4;++j) 
    			s.mat[i][j]=SAM::F[SAM::trans[1][i]][j];     
    	s=s^mid; 
    	ll re=inf; 
    	for(int i=0;i<4;++i) 
    		for(int j=0;j<4;++j) 
    			re=min(re, s.mat[i][j]);      
    	return re >= n; 
    }
    int main() {
    	// setIO("input");   
    	int i,_len; 
    	scanf("%lld%s",&n,str+1);       
    	_len=strlen(str+1); 
    	SAM::init(); 
    	for(i=1;i<=_len;++i) {
    		SAM::extend(str[i]-'A');    
    	}
    	SAM::prepare();    
    	ll l=1, r=n, mid, ans; 
    	while(l<=r){
    		mid=(l+r)>>1; 
    		if(check(mid)) ans=mid, r=mid-1;     
    		else l=mid+1;  
    	}
    	printf("%lld
    ",ans); 
    	return 0; 
    }
    

      

  • 相关阅读:
    js联系题目
    js运算符
    太极图
    第一周 Welcome
    对 vscode 自动格式化的结果不太满意,我们该如何自己调整直至自己满意为止
    ASP.NET MVC5.0 OutputCache不起效果
    对照实验(1)-批量清理系统临时文件
    ES6
    19.局部变量和全局变量
    18.函数定义和参数
  • 原文地址:https://www.cnblogs.com/guangheli/p/11121347.html
Copyright © 2011-2022 走看看