本题的关键在于求循环节.
如果能想到从循环节入手的话这道题还是比较友好的.
code:
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define ll long long #define N 1000009 #define setIO(s) freopen(s".in","r",stdin) using namespace std; int n; ll A,B,G,L[N],R[N]; ll gcd(ll a,ll b) { return b?gcd(b,a%b):a; } struct line { ll l,r; line(ll l=0,ll r=0):l(l),r(r){} bool operator<(const line &b) const { return l<b.l; } }s[N<<1]; int main() { // setIO("input"); int i,j,tot=0; scanf("%d%lld%lld",&n,&A,&B); G=A/gcd(A,B+1)*B; for(i=1;i<=n;++i) { scanf("%lld%lld",&L[i],&R[i]); if(L[i]-R[i]+1>=G) { printf("%lld ",G); return 0; } else { L[i]%=G,R[i]%=G; if(L[i]<=R[i]) s[++tot]=line(L[i],R[i]); else s[++tot]=line(0,R[i]),s[++tot]=line(L[i],G-1); } } sort(s+1,s+1+tot); ll ans=0; for(i=1;i<=tot;i=j) { ll nr=s[i].r; for(j=i;j<=tot&&s[j].l<=nr;++j) nr=max(nr,s[j].r); ans+=nr-s[i].l+1; } printf("%lld ",ans); return 0; }