在一棵树上,我们要求点 $(u,v)$ 之间路径的第$k$大数。
对于点 $i$ ,建立 $i$ 到根节点的一棵前缀主席树。
简单容斥后不难得出结果为$sumv[u]+sumv[v]−sumv[lca]−sumv[fa[lca]]$
其他的和主席树是一样的。
Code:
#include<cstdio> #include<cstring> #include<algorithm> #include<string> #include<iostream> using namespace std; void SetIO(string a){ string in = a + ".in"; freopen(in.c_str(),"r",stdin); } void debug(){ cout << 233 << endl; } const int maxn = 100000 + 5; int n, m; int val[maxn]; int Sorted[maxn]; inline void Disperse(){ sort(Sorted + 1, Sorted + 1 + n); for(int i = 1;i <= n; ++i) val[i] = lower_bound(Sorted + 1, Sorted + 1 + n, val[i]) - Sorted; } int head[maxn << 1], to[maxn << 1], nex[maxn << 1], edges; inline void add_edge(int u, int v){ nex[++edges] = head[u]; head[u] = edges; to[edges] = v; } inline void Read(){ scanf("%d%d",&n, &m); for(int i = 1;i <= n; ++i){ scanf("%d",&val[i]), Sorted[i] = val[i]; } for(int i = 1;i < n; ++i){ int a, b; scanf("%d%d",&a,&b); add_edge(a,b); add_edge(b,a); } } const int Tree_const = 50; int root[maxn]; struct Chair_Tree{ int cnt_node; int sumv[maxn * Tree_const], lson[maxn * Tree_const], rson[maxn * Tree_const]; void build(int l, int r, int &o){ if(l > r) return ; o = ++ cnt_node; if(l == r) return ; int mid = (l + r) >> 1; build(l, mid, lson[o]); build(mid + 1, r, rson[o]); } int insert(int l, int r, int o, int pos){ int oo = ++cnt_node; lson[oo] = lson[o]; rson[oo] = rson[o]; sumv[oo] = sumv[o] + 1; if(l == r) return oo; int mid = (l + r) >> 1; if(pos <= mid) lson[oo] = insert(l, mid, lson[o], pos); else rson[oo] = insert(mid + 1, r, rson[o], pos); return oo; } int query(int l, int r, int u, int v, int lca, int lca_fa, int k){ if(l == r) return l; int lsum = sumv[lson[u]] + sumv[lson[v]] - sumv[lson[lca]] - sumv[lson[lca_fa]]; int mid = (l + r) >> 1; if(k <= lsum) return query(l, mid, lson[u], lson[v], lson[lca], lson[lca_fa], k); else return query(mid + 1, r, rson[u], rson[v], rson[lca], rson[lca_fa], k - lsum); } }Tree; const int logn = 20; int f[23][maxn]; int dep[maxn]; void dfs(int u, int fa, int depth){ root[u] = Tree.insert(1, n, root[fa], val[u]); dep[u] = depth; f[0][u] = fa; for(int v = head[u]; v ; v = nex[v]){ if(to[v] == fa) continue; dfs(to[v], u, depth + 1); } } inline void get_ancester(){ for(int i = 1;i <= logn; ++i){ for(int j = 1;j <= n; ++j) f[i][j] = f[i - 1][f[i - 1][j]]; } } inline int get_lca(int a, int b){ if(dep[a] > dep[b]) swap(a,b); if(dep[a] != dep[b]){ for(int i = logn;i >= 0;--i){ if(dep[f[i][b]] >= dep[a]) b = f[i][b]; } } if(a == b) return a; for(int i = logn;i>=0;--i) if(f[i][a] != f[i][b]) a = f[i][a], b = f[i][b]; return f[0][a]; } inline void Build(){ Tree.build(1, n, root[0]); dfs(1, 0, 1); get_ancester(); } inline void Init(){ Read(); Disperse(); Build(); } inline void Work(){ int lastans = 0; while(m--){ int u, v, k; scanf("%d%d%d",&u, &v, &k); u ^= lastans; int lca = get_lca(u, v); lastans = Tree.query(1, n, root[u], root[v], root[lca], root[f[0][lca]], k); lastans = Sorted[lastans]; printf("%d ", lastans); } } int main(){ SetIO("input"); Init(); Work(); return 0; }