zoukankan      html  css  js  c++  java
  • Mahout安装

    本文记录在Hadoop集群环境下安装Mahout。

    环境:OS:Centos 6.5 x64 & Soft:Hadoop 1.2.1 & Mahout 0.9

    1、简介

    mahout项目主页:https://mahout.apache.org/

    下载二进制包,上传到服务器。

    2、安装

    用集群环境用户安装,解压二进制包。

    [huser@master hadoop]$ tar -xvf mahout-distribution-0.9.tar.gz 

    3、配置环境变量

    [huser@master ~]$ vi /etc/profile
    
    export JAVA_HOME=/usr/java/jdk1.7.0_51
    export CLASSPATH=.:$JAVA_HOME/jre/lib:$JAVA_HOME/lib/tools.jar 
    export JRE_HOME=$JAVA_HOME/jre 
    export HADOOP_HOME=/home/huser/hadoop/hadoop-1.2.1
    export HADOOP_CONF_DIR=/home/huser/hadoop/hadoop-1.2.1/conf
    export HADOOP_CLASSPATH=/home/huser/hadoop/hadoop-1.2.1/bin
    export MAHOUT_HOME=/home/huser/hadoop/mahout-distribution-0.9
    export MAHOUT_HOME_DIR=/home/huser/hadoop/mahout-distribution-0.9/conf
    export PATH=$PATH:$JAVA_HOME/bin:$MAHOUT_HOME/bin:$MAHOUT_HOME/conf
    [root@master huser]# source /etc/profile

    4、测试

    [huser@master ~]$ mahout 
    MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.
    Warning: $HADOOP_HOME is deprecated.
    
    Running on hadoop, using /home/huser/hadoop/hadoop-1.2.1/bin/hadoop and HADOOP_CONF_DIR=/home/huser/hadoop/hadoop-1.2.1/conf
    MAHOUT-JOB: /home/huser/hadoop/mahout-distribution-0.9/mahout-examples-0.9-job.jar
    Warning: $HADOOP_HOME is deprecated.
    
    An example program must be given as the first argument.
    Valid program names are:
    arff.vector: : Generate Vectors from an ARFF file or directory
    baumwelch: : Baum-Welch algorithm for unsupervised HMM training
    canopy: : Canopy clustering
    cat: : Print a file or resource as the logistic regression models would see it
    cleansvd: : Cleanup and verification of SVD output
    clusterdump: : Dump cluster output to text
    clusterpp: : Groups Clustering Output In Clusters
    cmdump: : Dump confusion matrix in HTML or text formats
    concatmatrices: : Concatenates 2 matrices of same cardinality into a single matrix
    cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
    cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
    evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
    fkmeans: : Fuzzy K-means clustering
    hmmpredict: : Generate random sequence of observations by given HMM
    itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
    kmeans: : K-means clustering
    lucene.vector: : Generate Vectors from a Lucene index
    lucene2seq: : Generate Text SequenceFiles from a Lucene index
    matrixdump: : Dump matrix in CSV format
    matrixmult: : Take the product of two matrices
    parallelALS: : ALS-WR factorization of a rating matrix
    qualcluster: : Runs clustering experiments and summarizes results in a CSV
    recommendfactorized: : Compute recommendations using the factorization of a rating matrix
    recommenditembased: : Compute recommendations using item-based collaborative filtering
    regexconverter: : Convert text files on a per line basis based on regular expressions
    resplit: : Splits a set of SequenceFiles into a number of equal splits
    rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
    rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
    runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
    runlogistic: : Run a logistic regression model against CSV data
    seq2encoded: : Encoded Sparse Vector generation from Text sequence files
    seq2sparse: : Sparse Vector generation from Text sequence files
    seqdirectory: : Generate sequence files (of Text) from a directory
    seqdumper: : Generic Sequence File dumper
    seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
    seqwiki: : Wikipedia xml dump to sequence file
    spectralkmeans: : Spectral k-means clustering
    split: : Split Input data into test and train sets
    splitDataset: : split a rating dataset into training and probe parts
    ssvd: : Stochastic SVD
    streamingkmeans: : Streaming k-means clustering
    svd: : Lanczos Singular Value Decomposition
    testnb: : Test the Vector-based Bayes classifier
    trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
    trainlogistic: : Train a logistic regression using stochastic gradient descent
    trainnb: : Train the Vector-based Bayes classifier
    transpose: : Take the transpose of a matrix
    validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
    vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
    vectordump: : Dump vectors from a sequence file to text
    viterbi: : Viterbi decoding of hidden states from given output states sequence
  • 相关阅读:
    Linux概念与体系阅读笔记
    iOS缓存
    iOS开发笔记系列-基础3(多态、动态类型和动态绑定)
    在进入新版本 的时候,进行推送引导
    手机号验证
    通过UIView对象获取该对象所属的UIViewController(转)
    支付宝和微信支付的各种填坑
    IOS开发简单登录LoginViewController、注册RegisterViewController、UcenterViewController功能实现方法
    iOS 注册登录页面
    多媒体元素的使用
  • 原文地址:https://www.cnblogs.com/guarder/p/3704981.html
Copyright © 2011-2022 走看看