zoukankan      html  css  js  c++  java
  • 交叉熵与softmax

    交叉熵

    [H(p,q)=-sumlimits_{x}p(x)log q(x) ]

    它刻画的是通过概率分布q来表达概率分布p的困难程度。交叉熵作为神经网络的损失函数时,p代表正确答案,q代表预测值,它刻画两个概率分布的距离,即交叉熵越小,两个概率分布越近。

    或写为

    [sum_ip_k imes log_2(frac{1}{q_k}) ]

    (p_k)表示真实分布,(q_k)表示非真实分布

    假如一个真实分布的概率为((frac{1}{2},frac{1}{4},frac{1}{8},frac{1}{8}))一个非真实分布的概率为(frac{1}{4},frac{1}{4},frac{1}{4},frac{1}{4}),那么交叉熵为

    [egin{align} &frac{1}{2} imeslog_2(4)+frac{1}{4} imeslog_2(4)+frac{1}{8} imeslog_2(4)+frac{1}{8} imeslog_2(4)\ &=1+frac{1}{2}+frac{1}{4}+frac{1}{4}\ &=2 end{align} ]

    交叉熵又可以写为

    [CE(y,hat{y})=-sum_iy_i imes log(hat{y_i}) ]

    Softmax

    [softmax(y_i)=y_i^{'}=frac{e^{y_i}}{sum_{j=1}^ne^{y_j}} ]

    概率函数与概率分布函数

    概率函数

    概率函数,就是用函数的形式表达概率。

    在离散型随机变量中,其表示的是变量取某一值的概率,如抛骰子,每个点的概率为(frac{1}{6})

    连续型随机变量的概率函数称为“概率密度函数”。用数学公式表示为定积分,可理解为几何面积。

    概率分布函数

    概率分布,关键在于分布。它是一个个概率函数的累加。

    正太分布

    正太分布又称为高斯分布,Normal、Gaussian。

    其概率密度度函数为

    [f(x)=-frac{1}{sqrt{2pi}sigma}exp(-frac{(x-mu)^2}{2sigma^2}) ]

  • 相关阅读:
    hdu 2063 二分图—最大匹配
    sql 中文转拼音首字母
    PhpStorm中如何使用Xdebug工具,入门级操作方法
    Linux怎么查看软件安装路径 查看mysql安装在哪
    仿淘宝实现多行星级评价
    Syslog linux 日志 规格严格
    Windows 退出码 规格严格
    AIX 查看进程监听端口 规格严格
    AIX tar zxvf 规格严格
    IpV6 linux RedHat5 规格严格
  • 原文地址:https://www.cnblogs.com/guesswhy/p/12882782.html
Copyright © 2011-2022 走看看