zoukankan      html  css  js  c++  java
  • 12-部署EFK插件

    配置和安装 EFK

    官方文件目录:cluster/addons/fluentd-elasticsearch

    $ ls *.yaml
    es-controller.yaml  es-service.yaml  fluentd-es-ds.yaml  kibana-controller.yaml  kibana-service.yaml efk-rbac.yaml
    

    同样EFK服务也需要一个efk-rbac.yaml文件,配置serviceaccount为efk

    已经修改好的 yaml 文件见:EFK

    配置 es-controller.yaml

    #  cat es-controller.yaml 
    apiVersion: v1
    kind: ReplicationController
    metadata:
      name: elasticsearch-logging-v1
      namespace: kube-system
      labels:
        k8s-app: elasticsearch-logging
        version: v1
        kubernetes.io/cluster-service: "true"
        addonmanager.kubernetes.io/mode: Reconcile
    spec:
      replicas: 2
      selector:
        k8s-app: elasticsearch-logging
        version: v1
      template:
        metadata:
          labels:
            k8s-app: elasticsearch-logging
            version: v1
            kubernetes.io/cluster-service: "true"
        spec:
          serviceAccountName: efk
          containers:
          - image:  index.tenxcloud.com/docker_library/elasticsearch:2.2.0
            name: elasticsearch-logging
            resources:
              # need more cpu upon initialization, therefore burstable class
              limits:
                cpu: 1000m
              requests:
                cpu: 100m
            ports:
            - containerPort: 9200
              name: db
              protocol: TCP
            - containerPort: 9300
              name: transport
              protocol: TCP
            volumeMounts:
            - name: es-persistent-storage
              mountPath: /data
            env:
            - name: "NAMESPACE"
              valueFrom:
                fieldRef:
                  fieldPath: metadata.namespace
          volumes:
          - name: es-persistent-storage
            emptyDir: {}
    
    

    配置 es-service.yaml

    无需修改

    配置 fluentd-es-ds.yaml

    # cat fluentd-es-ds.yaml 
    apiVersion: extensions/v1beta1
    kind: DaemonSet
    metadata:
      name: fluentd-es-v1.22
      namespace: kube-system
      labels:
        k8s-app: fluentd-es
        kubernetes.io/cluster-service: "true"
        addonmanager.kubernetes.io/mode: Reconcile
        version: v1.22
    spec:
      template:
        metadata:
          labels:
            k8s-app: fluentd-es
            kubernetes.io/cluster-service: "true"
            version: v1.22
          # This annotation ensures that fluentd does not get evicted if the node
          # supports critical pod annotation based priority scheme.
          # Note that this does not guarantee admission on the nodes (#40573).
          annotations:
            scheduler.alpha.kubernetes.io/critical-pod: ''
        spec:
          serviceAccountName: fluentd
          containers:
          - name: fluentd-es
            image: index.tenxcloud.com/zhangshun/fluentd-elasticsearch:v1
            command:
              - '/bin/sh'
              - '-c'
              - '/usr/sbin/td-agent 2>&1 >> /var/log/fluentd.log'
            resources:
              limits:
                memory: 200Mi
              requests:
                cpu: 100m
                memory: 200Mi
            volumeMounts:
            - name: varlog
              mountPath: /var/log
            - name: varlibdockercontainers
              mountPath: /var/lib/docker/containers
              readOnly: true
          nodeSelector:
            beta.kubernetes.io/fluentd-ds-ready: "true"
          tolerations:
          - key : "node.alpha.kubernetes.io/ismaster"
            effect: "NoSchedule"
          terminationGracePeriodSeconds: 30
          volumes:
          - name: varlog
            hostPath:
              path: /var/log
          - name: varlibdockercontainers
            hostPath:
              path: /var/lib/docker/containers
    
    

    配置 kibana-controller.yaml

    # cat kibana-controller.yaml 
    apiVersion: extensions/v1beta1
    kind: Deployment
    metadata:
      name: kibana-logging
      namespace: kube-system
      labels:
        k8s-app: kibana-logging
        kubernetes.io/cluster-service: "true"
        addonmanager.kubernetes.io/mode: Reconcile
    spec:
      replicas: 1
      selector:
        matchLabels:
          k8s-app: kibana-logging
      template:
        metadata:
          labels:
            k8s-app: kibana-logging
        spec:
          serviceAccountName: efk
          containers:
          - name: kibana-logging
            image: index.tenxcloud.com/docker_library/kibana:4.5.1
            resources:
              # keep request = limit to keep this container in guaranteed class
              limits:
                cpu: 100m
              requests:
                cpu: 100m
            env:
              - name: "ELASTICSEARCH_URL"
                value: "http://elasticsearch-logging:9200"
              - name: "KIBANA_BASE_URL"
                value: "/api/v1/proxy/namespaces/kube-system/services/kibana-logging"
            ports:
            - containerPort: 5601
              name: ui
              protocol: TCP
    
    

    给 Node 设置标签

    定义 DaemonSet fluentd-es-v1.22 时设置了 nodeSelector beta.kubernetes.io/fluentd-ds-ready=true ,所以需要在期望运行 fluentd 的 Node 上设置该标签;

    # kubectl get nodes
    NAME            STATUS    AGE       VERSION
    192.168.1.122   Ready     22h       v1.6.2
    192.168.1.123   Ready     22h       v1.6.2
    
    
    # kubectl label nodes 192.168.1.122 beta.kubernetes.io/fluentd-ds-ready=true
    node "172.20.0.112" labeled
    # kubectl label nodes 192.168.1.123 beta.kubernetes.io/fluentd-ds-ready=true
    node "172.20.0.123" labeled
    

    给其他两台node打上同样的标签。

    执行定义文件

    $ kubectl create -f .
    serviceaccount "efk" created
    clusterrolebinding "efk" created
    replicationcontroller "elasticsearch-logging-v1" created
    service "elasticsearch-logging" created
    daemonset "fluentd-es-v1.22" created
    deployment "kibana-logging" created
    service "kibana-logging" created
    

    检查执行结果

    $ kubectl get deployment -n kube-system|grep kibana
    kibana-logging         1         1         1            1           2m
    
    $ kubectl get pods -n kube-system|grep -E 'elasticsearch|fluentd|kibana'
    elasticsearch-logging-v1-mlstp          1/1       Running   0          1m
    elasticsearch-logging-v1-nfbbf          1/1       Running   0          1m
    fluentd-es-v1.22-31sm0                  1/1       Running   0          1m
    fluentd-es-v1.22-bpgqs                  1/1       Running   0          1m
    fluentd-es-v1.22-qmn7h                  1/1       Running   0          1m
    kibana-logging-1432287342-0gdng         1/1       Running   0          1m
    
    $ kubectl get service  -n kube-system|grep -E 'elasticsearch|kibana'
    elasticsearch-logging   10.254.77.62    <none>        9200/TCP                        2m
    kibana-logging          10.254.8.113    <none>        5601/TCP                        2m
    

    kibana Pod 第一次启动时会用较长时间(10-20分钟)来优化和 Cache 状态页面,可以 tailf 该 Pod 的日志观察进度:

    $ kubectl logs kibana-logging-1432287342-0gdng -n kube-system -f
    ELASTICSEARCH_URL=http://elasticsearch-logging:9200
    server.basePath: /api/v1/proxy/namespaces/kube-system/services/kibana-logging
    {"type":"log","@timestamp":"2017-07-26T13:08:06Z","tags":["info","optimize"],"pid":7,"message":"Optimizing and caching bundles for kibana and statusPage. This may take a few minutes"}
    {"type":"log","@timestamp":"2017-07-26T13:18:17Z","tags":["info","optimize"],"pid":7,"message":"Optimization of bundles for kibana and statusPage complete in 610.40 seconds"}
    {"type":"log","@timestamp":"2017-07-26T13:18:17Z","tags":["status","plugin:kibana@1.0.0","info"],"pid":7,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
    {"type":"log","@timestamp":"2017-07-26T13:18:18Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":7,"state":"yellow","message":"Status changed from uninitialized to yellow - Waiting for Elasticsearch","prevState":"uninitialized","prevMsg":"uninitialized"}
    {"type":"log","@timestamp":"2017-07-26T13:18:19Z","tags":["status","plugin:kbn_vislib_vis_types@1.0.0","info"],"pid":7,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
    {"type":"log","@timestamp":"2017-07-26T13:18:19Z","tags":["status","plugin:markdown_vis@1.0.0","info"],"pid":7,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
    {"type":"log","@timestamp":"2017-07-26T13:18:19Z","tags":["status","plugin:metric_vis@1.0.0","info"],"pid":7,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
    {"type":"log","@timestamp":"2017-07-26T13:18:19Z","tags":["status","plugin:spyModes@1.0.0","info"],"pid":7,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
    {"type":"log","@timestamp":"2017-07-26T13:18:19Z","tags":["status","plugin:statusPage@1.0.0","info"],"pid":7,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
    {"type":"log","@timestamp":"2017-07-26T13:18:19Z","tags":["status","plugin:table_vis@1.0.0","info"],"pid":7,"state":"green","message":"Status changed from uninitialized to green - Ready","prevState":"uninitialized","prevMsg":"uninitialized"}
    {"type":"log","@timestamp":"2017-07-26T13:18:19Z","tags":["listening","info"],"pid":7,"message":"Server running at http://0.0.0.0:5601"}
    {"type":"log","@timestamp":"2017-07-26T13:18:24Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":7,"state":"yellow","message":"Status changed from yellow to yellow - No existing Kibana index found","prevState":"yellow","prevMsg":"Waiting for Elasticsearch"}
    {"type":"log","@timestamp":"2017-07-26T13:18:29Z","tags":["status","plugin:elasticsearch@1.0.0","info"],"pid":7,"state":"green","message":"Status changed from yellow to green - Kibana index ready","prevState":"yellow","prevMsg":"No existing Kibana index found"}
    

    访问 kibana

    1. 通过 kube-apiserver 访问:

    获取 monitoring-grafana 服务 URL

    # kubectl cluster-info
    Kubernetes master is running at https://192.168.1.121:6443
    Elasticsearch is running at https://192.168.1.121:6443/api/v1/proxy/namespaces/kube-system/services/elasticsearch-logging
    Heapster is running at https://192.168.1.121:6443/api/v1/proxy/namespaces/kube-system/services/heapster
    Kibana is running at https://192.168.1.121:6443/api/v1/proxy/namespaces/kube-system/services/kibana-logging
    KubeDNS is running at https://192.168.1.121:6443/api/v1/proxy/namespaces/kube-system/services/kube-dns
    kubernetes-dashboard is running at https://192.168.1.121:6443/api/v1/proxy/namespaces/kube-system/services/kubernetes-dashboard
    monitoring-grafana is running at https://192.168.1.121:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-grafana
    monitoring-influxdb is running at https://192.168.1.121:6443/api/v1/proxy/namespaces/kube-system/services/monitoring-influxd
    
    
    浏览器访问 URL: `https://192.168.1.121:6443/api/v1/proxy/namespaces/kube-system/services/kibana-logging/app/kibana`
    
    1. 通过 kubectl proxy 访问:

      创建代理

      $ kubectl proxy --address='192.168.1.121' --port=8086 --accept-hosts='^*$'
      Starting to serve on 192.168.1.121:8086
      

      浏览器访问 URL:http://192.168.1.121:8086/api/v1/proxy/namespaces/kube-system/services/kibana-logging

    在 Settings -> Indices 页面创建一个 index(相当于 mysql 中的一个 database),选中 Index contains time-based events,使用默认的 logstash-* pattern,点击 Create ;

    可能遇到的问题

    如果你在这里发现Create按钮是灰色的无法点击,且Time-filed name中没有选项,fluentd要读取/var/log/containers/目录下的log日志,这些日志是从/var/lib/docker/containers/${CONTAINER_ID}/${CONTAINER_ID}-json.log链接过来的,查看你的docker配置,—log-dirver需要设置为json-file格式,默认的可能是journald,参考docker logging

    es-setting

    创建Index后,可以在 Discover 下看到 ElasticSearch logging 中汇聚的日志;

    es-home

  • 相关阅读:
    Lightmaping
    Android内存回收机制
    基本光照模型简单实现
    Pass的通用指令开关
    使用Depth Texture
    使用替换shader渲染
    Windows下安装Oracle12C(一)
    SpringMVC文件上传基础
    Spring集成线程池
    《经久不衰的Spring框架:@ResponseBody 中文乱码》(转)
  • 原文地址:https://www.cnblogs.com/guigujun/p/8366549.html
Copyright © 2011-2022 走看看