常用十大算法(六)— 普里姆算法
博客说明
文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢!
介绍
普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
最小生成树
- 最小生成树(Minimum Cost Spanning Tree),简称MST。
- 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
- N个顶点,一定有N-1条边
- 包含全部顶点
- N-1条边都在图中
- 求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法
修路问题
- 有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
- 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
- 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
- 思路: 将10条边,连接即可,但是总的里程数不是最小.
- 正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少.
思路
- 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
- 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
- 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
- 重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
代码实现
package com.atguigu.prim;
import java.util.Arrays;
public class PrimAlgorithm {
public static void main(String[] args) {
char[] data = new char[]{'A','B','C','D','E','F','G'};
int verxs = data.length;
int [][]weight=new int[][]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},};
MGraph graph = new MGraph(verxs);
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
minTree.showGraph(graph);
minTree.prim(graph, 1);
}
}
//最小生成树
class MinTree {
//创建
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
int i, j;
for(i = 0; i < verxs; i++) {
graph.data[i] = data[i];
for(j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
//显示
public void showGraph(MGraph graph) {
for(int[] link: graph.weight) {
System.out.println(Arrays.toString(link));
}
}
//prim算法
public void prim(MGraph graph, int v) {
int visited[] = new int[graph.verxs];
//标记已访问
visited[v] = 1;
int h1 = -1;
int h2 = -1;
int minWeight = 10000;
for(int k = 1; k < graph.verxs; k++) {
for(int i = 0; i < graph.verxs; i++) {
for(int j = 0; j< graph.verxs;j++) {
if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
visited[h2] = 1;
minWeight = 10000;
}
}
}
class MGraph {
int verxs;
char[] data;
int[][] weight;
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
感谢
尚硅谷