zoukankan      html  css  js  c++  java
  • 线性方程组的分解法——列主元消去法

      1.代码

    %%列主元消去法
    function ECPE = Elimination_of_column_pivot_entries(M,b)
    global n;
    [n,n] = size(M);
    B  =[M,b];
    R_A = rank(M);R_B = rank(B);
    if R_A ~= R_B
        disp('方程无解');
    elseif (R_A == R_B)&&(R_A == n)
        disp('此方程有唯一解');
        for k = 1:n-1
            B = Column_pivot_transformation(B,k);
            B = Elimination_method(B,k);
        end
        X = Upper_trig_iterative_solution(B);
    else
        disp('方程有无穷多组解');
    end
    disp('解向量为:');
    ECPE = X;
    %%列主元变换
    %%指定p列,找出列最大值,以此值为主元进行行变换
        function CPT = Column_pivot_transformation(M,p)
            [m,n] = size(M);
            s = max(M(p:m,p));
            [x,y] = find(M(p:m,p) == s);
            H = x+p-1;
            Ch1 = M(H,:);
            Ch2 = M(p,:);
            M(H,:) = Ch2;
            M(p,:) = Ch1;
            CPT = M;
        end
    %%p列消元函数
        function EM = Elimination_method(M,p)
            [m,n] = size(M);Div = zeros(1,m);
            for i = p+1:m
                Div(i) = M(i,p)/M(p,p);
            end
            for j = p:n
                for i = p:m
                    M(i,j) = M(i,j)-M(p,j)*Div(i);
                end
            end
            EM = M;
        end
    %%上三角迭代法
        function UTIS = Upper_trig_iterative_solution(M)
            [m,n] = size(M);
            A = M(:,1:n-1);ba = M(:,n);
            x = zeros(1,m);
            x(m) =ba(m)/A(m,m);
            for i = m-1:-1:1
                sum = 0;
                for j = i+1:1:m
                    sum = sum+A(i,j)*x(j);
                end
                x(i) = (ba(i)-sum)/A(i,i);
            end
            UTIS = x';
        end
    end
    

      2.例子

    clear all
    clc
    M = rand(9)
    b = reshape(rand(3),9,1)
     
    S = Elimination_of_column_pivot_entries(M,b)
    
    M
    

      结果

    M =
      列 1 至 7
        0.2089    0.3502    0.8699    0.6473    0.4046    0.1389    0.7413
        0.7093    0.6620    0.2648    0.5439    0.4484    0.6963    0.5201
        0.2362    0.4162    0.3181    0.7210    0.3658    0.0938    0.3477
        0.1194    0.8419    0.1192    0.5225    0.7635    0.5254    0.1500
        0.6073    0.8329    0.9398    0.9937    0.6279    0.5303    0.5861
        0.4501    0.2564    0.6456    0.2187    0.7720    0.8611    0.2621
        0.4587    0.6135    0.4795    0.1058    0.9329    0.4849    0.0445
        0.6619    0.5822    0.6393    0.1097    0.9727    0.3935    0.7549
        0.7703    0.5407    0.5447    0.0636    0.1920    0.6714    0.2428
      列 8 至 9
        0.4424    0.3309
        0.6878    0.4243
        0.3592    0.2703
        0.7363    0.1971
        0.3947    0.8217
        0.6834    0.4299
        0.7040    0.8878
        0.4423    0.3912
        0.0196    0.7691
    b =
        0.3968
        0.8085
        0.7551
        0.3774
        0.2160
        0.7904
        0.9493
        0.3276
        0.6713
    此方程有唯一解
    解向量为:
    S =
       19.6917
        7.6005
       17.0314
       -1.6699
       -5.7675
      -12.1059
      -19.9661
       10.5792
      -18.0751
    ans =
       19.6917
        7.6005
       17.0314
       -1.6699
       -5.7675
      -12.1059
      -19.9661
       10.5792
      -18.0751
    

      

  • 相关阅读:
    c++ fstream中seekg()和seekp()的用法
    java连接MySql数据库
    AspNetPager查询分页问题(点击页码,不再是查询后的数据集)viewstate解决
    C#操作XML文档
    关于PHP程序员解决问题的能力
    HDOJ 1874( dijkstra )
    错排问题 (Mathematics)
    中缀表达式到后缀表达式 (Data_Structure)
    几次到1(分治递归)
    max(int) = 0x7fffffff
  • 原文地址:https://www.cnblogs.com/guliangt/p/12119393.html
Copyright © 2011-2022 走看看