zoukankan      html  css  js  c++  java
  • 线性方程组的分解法——列主元消去法

      1.代码

    %%列主元消去法
    function ECPE = Elimination_of_column_pivot_entries(M,b)
    global n;
    [n,n] = size(M);
    B  =[M,b];
    R_A = rank(M);R_B = rank(B);
    if R_A ~= R_B
        disp('方程无解');
    elseif (R_A == R_B)&&(R_A == n)
        disp('此方程有唯一解');
        for k = 1:n-1
            B = Column_pivot_transformation(B,k);
            B = Elimination_method(B,k);
        end
        X = Upper_trig_iterative_solution(B);
    else
        disp('方程有无穷多组解');
    end
    disp('解向量为:');
    ECPE = X;
    %%列主元变换
    %%指定p列,找出列最大值,以此值为主元进行行变换
        function CPT = Column_pivot_transformation(M,p)
            [m,n] = size(M);
            s = max(M(p:m,p));
            [x,y] = find(M(p:m,p) == s);
            H = x+p-1;
            Ch1 = M(H,:);
            Ch2 = M(p,:);
            M(H,:) = Ch2;
            M(p,:) = Ch1;
            CPT = M;
        end
    %%p列消元函数
        function EM = Elimination_method(M,p)
            [m,n] = size(M);Div = zeros(1,m);
            for i = p+1:m
                Div(i) = M(i,p)/M(p,p);
            end
            for j = p:n
                for i = p:m
                    M(i,j) = M(i,j)-M(p,j)*Div(i);
                end
            end
            EM = M;
        end
    %%上三角迭代法
        function UTIS = Upper_trig_iterative_solution(M)
            [m,n] = size(M);
            A = M(:,1:n-1);ba = M(:,n);
            x = zeros(1,m);
            x(m) =ba(m)/A(m,m);
            for i = m-1:-1:1
                sum = 0;
                for j = i+1:1:m
                    sum = sum+A(i,j)*x(j);
                end
                x(i) = (ba(i)-sum)/A(i,i);
            end
            UTIS = x';
        end
    end
    

      2.例子

    clear all
    clc
    M = rand(9)
    b = reshape(rand(3),9,1)
     
    S = Elimination_of_column_pivot_entries(M,b)
    
    M
    

      结果

    M =
      列 1 至 7
        0.2089    0.3502    0.8699    0.6473    0.4046    0.1389    0.7413
        0.7093    0.6620    0.2648    0.5439    0.4484    0.6963    0.5201
        0.2362    0.4162    0.3181    0.7210    0.3658    0.0938    0.3477
        0.1194    0.8419    0.1192    0.5225    0.7635    0.5254    0.1500
        0.6073    0.8329    0.9398    0.9937    0.6279    0.5303    0.5861
        0.4501    0.2564    0.6456    0.2187    0.7720    0.8611    0.2621
        0.4587    0.6135    0.4795    0.1058    0.9329    0.4849    0.0445
        0.6619    0.5822    0.6393    0.1097    0.9727    0.3935    0.7549
        0.7703    0.5407    0.5447    0.0636    0.1920    0.6714    0.2428
      列 8 至 9
        0.4424    0.3309
        0.6878    0.4243
        0.3592    0.2703
        0.7363    0.1971
        0.3947    0.8217
        0.6834    0.4299
        0.7040    0.8878
        0.4423    0.3912
        0.0196    0.7691
    b =
        0.3968
        0.8085
        0.7551
        0.3774
        0.2160
        0.7904
        0.9493
        0.3276
        0.6713
    此方程有唯一解
    解向量为:
    S =
       19.6917
        7.6005
       17.0314
       -1.6699
       -5.7675
      -12.1059
      -19.9661
       10.5792
      -18.0751
    ans =
       19.6917
        7.6005
       17.0314
       -1.6699
       -5.7675
      -12.1059
      -19.9661
       10.5792
      -18.0751
    

      

  • 相关阅读:
    源码解析.Net中IConfiguration配置的实现
    python小工具
    hue搭建以及报错记录
    jenkins启动指定数据目录
    基于三维地图的智慧园区可视化解决方案
    工业4.0的下一个十年
    项目管理知识体系介绍
    人工智能发展的新方向
    速成财务产品经理
    标准化体系:运营—训练—督导
  • 原文地址:https://www.cnblogs.com/guliangt/p/12119393.html
Copyright © 2011-2022 走看看