zoukankan      html  css  js  c++  java
  • Title

    Python实现优先级队列

    基于最大堆实现的优先级队列

    class Array(object):
        def __init__(self, size=32, init=None):
            self._size = size
            self._items = [init] * self._size
        def __getitem__(self, index):
            return self._items[index]
        def __setitem__(self, index, value):
            self._items[index] = value
        def __len__(self):
            return self._size
        def clear(self, value=None):
            for i in range(len(self._items)):
                self._items[i] = value
        def __iter__(self):
            for item in self._items:
                yield item
    
    class MaxHeap(object):
        def __init__(self, maxsize=None):
            self.maxsize = maxsize
            self._elements = Array(maxsize)
            self._count = 0
    
        def __len__(self):
            return self._count
    
        def add(self, value):
            if self._count >= self.maxsize:
                raise Exception("full")
            # 把值插入最后一位
            self._elements[self._count] = value
            self._count += 1
            # 维持最大堆属性
            self._siftup(self._count-1)
    
        def _siftup(self, ndx):
            if ndx > 0:
                parent = int((ndx-1)/2)
                # 如果插入的值大于 parent,一直交换
                if self._elements[ndx] > self._elements[parent]:
                    self._elements[ndx], self._elements[parent] = self._elements[parent], self._elements[ndx]
                    # 递归交换
                    self._siftup(parent)
    
        def extract(self):
            """
            获取并且移除根节点
            :return:
            """
            if self._count <= 0:
                raise Exception("empty")
            # 保存root节点
            value = self._elements[0]
            self._count -= 1
            # 最右下的节点放到root后siftDown
            self._elements[0] = self._elements[self._count]
            # 维持堆特性
            self._siftdown(0)
            return value
    
        def _siftdown(self, ndx):
            # 下筛选操作
            left = 2 * ndx + 1
            right = 2 * ndx + 2
            # 确定哪个节点包含较大的值
            largest = ndx
            if (left < self._count and    # 有左孩子
                    self._elements[left] >= self._elements[largest] and   # 左孩子的值大于要找的
                    self._elements[left] >= self._elements[right]):       # 左孩子的值大于右孩子的值
                # 更新最大的下标为左孩子的下标
                largest = left
            elif right < self._count and self._elements[right] >= self._elements[largest]:
                # 更新最大的下标为右孩子的下标
                largest = right
            # 不等的话就交换更新 然后递归调用
            if largest != ndx:
                self._elements[ndx], self._elements[largest] = self._elements[largest], self._elements[ndx]
                self._siftdown(largest)
    
    class PriorityQueue(object):
        def __init__(self, maxsize):
            self.maxsize = maxsize
            self._maxheap = MaxHeap(maxsize)
    
        def push(self, priority, value):
            # 注意这里把这个 tuple push 进去,python 比较 tuple 从第一个开始比较
            # 这样就很巧妙地实现了按照优先级排序
            entry = (priority, value)    # 入队的时候会根据 priority 维持堆的特性
            self._maxheap.add(entry)
    
        def pop(self, with_priority=False):
            entry = self._maxheap.extract()
            if with_priority:
                return entry
            else:
                return entry[1]
    
        def is_empty(self):
            return len(self._maxheap) == 0
    
  • 相关阅读:
    RAID技术
    敏捷开发
    如何写出高质量的代码?现在知道还不晚
    Java大型互联网架构技术经验
    Chrome精品插件
    2018 java BAT最新面试宝典
    Java成神之路(2018版)
    三分钟读懂摘要算法
    我的Mac应用清单
    事务隔离级别
  • 原文地址:https://www.cnblogs.com/guotianbao/p/12786885.html
Copyright © 2011-2022 走看看