zoukankan      html  css  js  c++  java
  • 卷积神经网络CNN的意义

    一、选用卷积的原因

    • 局部感知

    简单来说,卷积核的大小一般小于输入图像的大小(如果等于则是全连接),因此卷积提取出的特征会更多地关注局部 —— 这很符合日常我们接触到的图像处理。而每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息

    • 参数共享

    参数共享最大的作用莫过于很大限度地减少运算量了。

    • 多核

    一般我们都不会只用一个卷积核对输入图像进行过滤,因为一个核的参数是固定的,其提取的特征也会单一化。这就有点像是我们平时如何客观看待事物,必须要从多个角度分析事物,这样才能尽可能地避免对该事物产生偏见。我们也需要多个卷积核对输入图像进行卷积。

    二、卷积神经网络中的参数计算

    举例1:

      比如输入是一个32x32x3的图像,3表示RGB三通道,每个filter/kernel是5x5x3,一个卷积核产生一个feature map,下图中,有6个5x5x3的卷积核,故输出6个feature map(activation map),大小即为28x28x6。

           下图中,第二层到第三层,其中每个卷积核大小为5x5x6,这里的6就是28x28x6中的6,两者需要相同,即每个卷积核的“层数”需要与输入的“层数”一致。有几个卷积核,就输出几个feature map,下图中,与第二层作卷积的卷积核有10个,故输出的第三层有10个通道。

    举例2:

      NxN大小的输入(暂时不考虑通道数),与FxF大小的卷积核(暂时不考虑个数)做卷积,那么输出大小为多大?计算公式为:(N - F) / stride + 1,其中stride为做卷积是相邻卷积核的距离。

    举例3:

      当输入为7x7大小,卷积核为3x3,stride=1,在7x7周围补上一圈0(pad=1个像素),那么输出大小为多大?

    是7x7。

    举例3:

           输入为32x32x3,卷积核大小为5x5,总共有10个卷积核,做卷积的时候stride=1,pad=2,那么这一层总共含有多少参数?

           每个卷积核含有的参数个数为:5*5*3 + 1 = 76,其中1是偏置bias,由于有10个卷积核,故总参数为76*10=760。

    总结:

    其中,卷积核的数量K一般是2的整数次幂,这是因为计算方便(计算机计算2^n比较快)

    关于池化层的参数计算:

    Pooling 的意义,主要有两点:

    1. 其中一个显而易见,就是减少参数。通过对 Feature Map 降维,有效减少后续层需要的参数。
    2. 另一个则是 Translation Invariance。它表示对于 Input,当其中像素在邻域发生微小位移时,Pooling Layer 的输出是不变的。这就使网络的鲁棒性增强了,有一定抗扰动的作用。

    参考:

    斯坦福大学CS231N课程PPT

    http://cs231n.stanford.edu/slides/2016/winter1516_lecture7.pdf

    三、边界填充问题

    卷积操作有两个问题: 
    1. 图像越来越小; 
    2. 图像边界信息丢失,即有些图像角落和边界的信息发挥作用较少。因此需要padding。

    卷积核大小通常为奇数 
    一方面是为了方便same卷积padding对称填充,左右两边对称补零; 
    n+2p-f+1=n 
    p=(f-1)/2 
    另一方面,奇数过滤器有中心像素,便于确定过滤器的位置。

    两种padding方式:"same"/"valid"

    “VALID”只会丢弃最右边无法扫描到的列(或者最底部无法扫描到的列)。

    “SAME”试图在左右添加padding,但如果列添加的数量是奇数,则将额外的添加到右侧(即保持双数时,左右padding相通,偶数时,右侧/底部 比 左侧/顶部 多1),在垂直方向同理)。

     Tensorflow中的定义

    The TensorFlow Convolution example gives an overview about the difference between SAME and VALID :
    
        For the SAME padding, the output height and width are computed as:
    
        out_height = ceil(float(in_height) / float(strides[1]))
    
    out_width = ceil(float(in_width) / float(strides[2]))
    
    And
    
        For the VALID padding, the output height and width are computed as:
    
    out_height = ceil(float(in_height - filter_height + 1) / float(strides1))
    
    out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))

    ceil为向上取整。


     待完善

  • 相关阅读:
    MySQL Case When 用法
    Delphi磁性窗口
    一个灵巧的Delphi多播实事件现方案.
    Delphi bpl 插件框架
    Win7下超级管理员创建普通权限任务
    Delphi 插件(Plugins)创建、调试与使用应用程序扩展
    Dll中导出类Delphi实战
    让你的程序支持插件
    构造一个通用的回调Thunk.(把回调函数指向对象的方法的办法)
    打造类.NET带垃圾回收功能的Delphi版GDIPlus
  • 原文地址:https://www.cnblogs.com/guoyaohua/p/8589853.html
Copyright © 2011-2022 走看看