zoukankan      html  css  js  c++  java
  • 聚类模型

    聚类模型(欧式距离)

    分类与聚类,分类是有监督的学习,聚类是无监督的学习

    K均值算法

    第一步:假设有一组样本,随机选择k个样本,作为k个聚类的中心,计算距离,将样本划分到离自己最近的类别里。(比如喜欢看的电影:1,30,1【爱情,30分钟,1 高清】1,31,1)

    注意:1,聚类数K必须事先已知,

       2,聚类中心的初始选择会影响最终聚类划分的结果。初始中心尽量选择距离较远的样本

    K均值的相关API:

    model.fit(x)  #输出类别标签 ,从0开始

    model  = SC.KMeans(n_clusters = 4)#几个聚类中心

    y=model.predict(x) #预测x中每个样本的类别标签

    y = model.labels_  #直接返回每个训练样本的类别标签

    #获取训练结果的聚类中心

    centers = model.cluster_centers_

  • 相关阅读:
    iOS进阶_三方使用步骤
    Runtime
    感想
    git
    随笔感想
    关于APP上架问题需要ipad图标的问题
    ubuntu安装
    JNI和NDK
    数据结构——队列链表实现
    数据结构——栈的实现(数组、Java)
  • 原文地址:https://www.cnblogs.com/gwy1163/p/12559621.html
Copyright © 2011-2022 走看看