我们继续看,直接进入ListenAndServe函数
func ListenAndServe(addr string, handler Handler) error { server := &Server{Addr: addr, Handler: handler} return server.ListenAndServe() }
可以看到,把addr放到一个Server结构中,并且调用ListenAndServer()。这里面向对象的方法,相当于Java中new一个对象的实例,并且调用该实例的方法。
继续进函数:
func (srv *Server) ListenAndServe() error { addr := srv.Addr if addr == "" { addr = ":http" } ln, err := net.Listen("tcp", addr) if err != nil { return err } return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)}) }
开了tcp 端口监听,并且返回了个 Serve 函数,把tcp的对象传递进去了。
//2871 func (srv *Server) Serve(l net.Listener) error { ... var tempDelay time.Duration // how long to sleep on accept failure ctx := context.WithValue(baseCtx, ServerContextKey, srv) for { // Accept()返回底层TCP的连接 rw, err := l.Accept() if err != nil { select { case <-srv.getDoneChan(): return ErrServerClosed default: } if ne, ok := err.(net.Error); ok && ne.Temporary() { // 处理accept因为网络失败之后的等待时间 if tempDelay == 0 { tempDelay = 5 * time.Millisecond } else { tempDelay *= 2 } if max := 1 * time.Second; tempDelay > max { tempDelay = max } srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay) time.Sleep(tempDelay) continue } return err } connCtx := ctx if cc := srv.ConnContext; cc != nil { connCtx = cc(connCtx, rw) if connCtx == nil { panic("ConnContext returned nil") } } tempDelay = 0 c := srv.newConn(rw) c.setState(c.rwc, StateNew) // before Serve can return //在另外的goroutine中处理基于该TCP的HTTP请求,本goroutine可以继续accept TCP连接 go c.serve(connCtx) } }
可以重点关注:
for { rw, e := l.Accept() ... c, err := srv.newConn(rw) ... go c.serve() }
首先,tcp在监听,然后循环接受请求,建立连接,并且用关键字go开启一个服务并发地处理每一个连接。
// Serve a new connection. func (c *conn) serve(ctx context.Context) { c.remoteAddr = c.rwc.RemoteAddr().String() ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) // 处理ServeTLS accept的连接 if tlsConn, ok := c.rwc.(*tls.Conn); ok { if d := c.server.ReadTimeout; d != 0 { // 设置TCP的读超时时间 c.rwc.SetReadDeadline(time.Now().Add(d)) } if d := c.server.WriteTimeout; d != 0 { // 设置TCP的写超时时间 c.rwc.SetWriteDeadline(time.Now().Add(d)) } // tls协商并判断协商结果 if err := tlsConn.Handshake(); err != nil { // If the handshake failed due to the client not speaking // TLS, assume they're speaking plaintext HTTP and write a // 400 response on the TLS conn's underlying net.Conn. if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) { io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request Client sent an HTTP request to an HTTPS server. ") re.Conn.Close() return } c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err) return } c.tlsState = new(tls.ConnectionState) *c.tlsState = tlsConn.ConnectionState() // 用于判断是否使用TLS的NPN扩展协商出非http/1.1和http/1.0的上层协议,如果存在则使用server.TLSNextProto处理请求 if proto := c.tlsState.NegotiatedProtocol; validNextProto(proto) { if fn := c.server.TLSNextProto[proto]; fn != nil { h := initALPNRequest{ctx, tlsConn, serverHandler{c.server}} fn(c.server, tlsConn, h) } return } } // HTTP/1.x from here on. // 下面处理HTTP/1.x的请求 ctx, cancelCtx := context.WithCancel(ctx) c.cancelCtx = cancelCtx defer cancelCtx() // 为c.bufr创建read源,使用sync.pool提高存取效率 c.r = &connReader{conn: c} // read buf长度默认为4096,创建ioReader为c.r的bufio.Reader。用于读取HTTP的request c.bufr = newBufioReader(c.r) // c.bufw默认长度为4096,4<<10=4096,用于发送response c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) // 循环处理HTTP请求 for { // 处理请求并返回封装好的响应 w, err := c.readRequest(ctx) // 判断是否有读取过数据,如果读取过数据则设置TCP状态为active if c.r.remain != c.server.initialReadLimitSize() { // If we read any bytes off the wire, we're active. c.setState(c.rwc, StateActive) } // 处理http请求错误 if err != nil { const errorHeaders = " Content-Type: text/plain; charset=utf-8 Connection: close " switch { case err == errTooLarge: const publicErr = "431 Request Header Fields Too Large" fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) c.closeWriteAndWait() return case isUnsupportedTEError(err): code := StatusNotImplemented fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders) return case isCommonNetReadError(err): return // don't reply default: publicErr := "400 Bad Request" if v, ok := err.(badRequestError); ok { publicErr = publicErr + ": " + string(v) } fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) return } } // Expect 100 Continue support // 如果http首部包含"100-continue"请求 req := w.req if req.expectsContinue() { // "100-continue"的首部要求http1.1版本以上,且http.body长度不为0 if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { // Wrap the Body reader with one that replies on the connection req.Body = &expectContinueReader{readCloser: req.Body, resp: w} } // 非"100-continue"但首部包含"Expect"字段的请求为非法请求 } else if req.Header.get("Expect") != "" { w.sendExpectationFailed() return } // curReq保存了当前的response,当前代码中主要用于在读失败后调用response中的closeNotifyCh传递信号,此时连接断开 c.curReq.Store(w) // 判断是否有后续的数据,req.Body在http.readTransfer函数中设置为http.body类型,registerOnHitEOF注册的就是 // 遇到EOF时执行的函数http.body.onHitEOF if requestBodyRemains(req.Body) { registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead) } else { // 如果没有后续的数据,调用下面函数在新的goroutine中阻塞等待数据的到来,通知finishRequest w.conn.r.startBackgroundRead() } // 通过请求找到匹配的handler,然后处理请求并发送响应 serverHandler{c.server}.ServeHTTP(w, w.req) w.cancelCtx() if c.hijacked() { return } // 该函数中会结束HTTP请求,发送response w.finishRequest() // 判断是否需要重用底层TCP连接,即是否退出本函数的for循环,推出for循环将断开连接 if !w.shouldReuseConnection() { // 不可重用底层连接时,如果请求数据过大或设置提前取消读取数据,则调用closeWriteAndWait平滑关闭TCP连接 if w.requestBodyLimitHit || w.closedRequestBodyEarly() { c.closeWriteAndWait() } return } // 重用连接,设置底层状态为idle c.setState(c.rwc, StateIdle) c.curReq.Store((*response)(nil)) // 如果没有通过SetKeepAlivesEnabled设置HTTP keepalive或底层连接已经通过如Server.Close关闭,则直接退出 if !w.conn.server.doKeepAlives() { return } if d := c.server.idleTimeout(); d != 0 { // 如果设置了idle状态超时时间,则调用SetReadDeadline设置底层连接deadline,并调用bufr.Peek等待请求 c.rwc.SetReadDeadline(time.Now().Add(d)) if _, err := c.bufr.Peek(4); err != nil { return } } c.rwc.SetReadDeadline(time.Time{}) } }
实际上,精简下:
for{ w, err := c.readRequest() ... serverHandler{c.server}.ServeHTTP(w, w.req) ... w.finishRequest() }
newConn生成的HTTP结构体如下,它表示一条基于TCP的HTTP连接,封装了3个重要的数据结构:server表示HTTP server的"server";rwc表示底层连接结构体rwc net.Conn;r用于读取http数据的connReader(从rwc读取数据)。后续的request和response都基于该结构体。
下面我们看下readRequest函数处理http请求:
func (c *conn) readRequest(ctx context.Context) (w *response, err error) { if c.hijacked() { return nil, ErrHijacked } var ( wholeReqDeadline time.Time // or zero if none hdrDeadline time.Time // or zero if none ) t0 := time.Now() // 设置读取HTTP的超时时间 if d := c.server.readHeaderTimeout(); d != 0 { hdrDeadline = t0.Add(d) } // 设置读取整个HTTP的超时时间 if d := c.server.ReadTimeout; d != 0 { wholeReqDeadline = t0.Add(d) } // 通过SetReadDeadline设置TCP读超时时间 c.rwc.SetReadDeadline(hdrDeadline) if d := c.server.WriteTimeout; d != 0 { // 通过defer设置TCP写超时时间,本函数主要处理读请求,在本函数处理完request之后再设置写超时时间 defer func() { c.rwc.SetWriteDeadline(time.Now().Add(d)) }() } // 设置读取请求的最大字节数,为DefaultMaxHeaderBytes+4096=1052672,用于防止超大报文攻击 c.r.setReadLimit(c.server.initialReadLimitSize()) // 处理老设备的client if c.lastMethod == "POST" { // RFC 7230 section 3.5 Message Parsing Robustness tolerance for old buggy clients. peek, _ := c.bufr.Peek(4) // ReadRequest will get err below c.bufr.Discard(numLeadingCRorLF(peek)) } // 从bufr读取request,并返回结构体格式的请求 req, err := readRequest(c.bufr, keepHostHeader) if err != nil { // 如果读取的报文超过限制,则返回错误 if c.r.hitReadLimit() { return nil, errTooLarge } return nil, err } // 判断是否是go服务所支持的HTTP/1.x的请求 if !http1ServerSupportsRequest(req) { return nil, badRequestError("unsupported protocol version") } c.lastMethod = req.Method c.r.setInfiniteReadLimit() hosts, haveHost := req.Header["Host"] isH2Upgrade := req.isH2Upgrade() // 判断是否需要Host首部字段 if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" { return nil, badRequestError("missing required Host header") } // 多个Host首部字段 if len(hosts) > 1 { return nil, badRequestError("too many Host headers") } // 非法Host首部字段值 if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) { return nil, badRequestError("malformed Host header") } // 判断首部字段值是否有非法字符 for k, vv := range req.Header { if !httpguts.ValidHeaderFieldName(k) { return nil, badRequestError("invalid header name") } for _, v := range vv { if !httpguts.ValidHeaderFieldValue(v) { return nil, badRequestError("invalid header value") } } } // 响应报文中不包含Host字段 delete(req.Header, "Host") ctx, cancelCtx := context.WithCancel(ctx) req.ctx = ctx req.RemoteAddr = c.remoteAddr req.TLS = c.tlsState if body, ok := req.Body.(*body); ok { body.doEarlyClose = true } // 判断是否超过请求的最大值 if !hdrDeadline.Equal(wholeReqDeadline) { c.rwc.SetReadDeadline(wholeReqDeadline) } w = &response{ conn: c, cancelCtx: cancelCtx, req: req, reqBody: req.Body, handlerHeader: make(Header), contentLength: -1, closeNotifyCh: make(chan bool, 1), // We populate these ahead of time so we're not // reading from req.Header after their Handler starts // and maybe mutates it (Issue 14940) wants10KeepAlive: req.wantsHttp10KeepAlive(), wantsClose: req.wantsClose(), } if isH2Upgrade { w.closeAfterReply = true } // w.cw.res中保存了response的信息,而response中又保存了底层连接conn,后续将通过w.cw.res.conn写数据 w.cw.res = w // 创建2048字节的写bufio,用于发送response w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize) return w, nil }
读取HTTP请求,并将其结构化为http.Request
func readRequest(b *bufio.Reader, deleteHostHeader bool) (req *Request, err error) { // 封装为textproto.Reader,该结构体实现了读取HTTP的相关方法 tp := newTextprotoReader(b) // 初始化一个Request结构体,该函数后续工作就是填充该变量并返回 req = new(Request) // First line: GET /index.html HTTP/1.0 var s string // ReadLine会调用<textproto.(*Reader).ReadLine->textproto.(*Reader).readLineSlice->bufio.(*Reader).ReadLine-> // bufio.(*Reader).ReadSlic->bufio.(*Reader).fill->http.(*connReader).Read>读取HTTP的请求并填充b.buf,并返回以" "作为 // 分隔符的首行字符串 GET / HTTP/1.1 if s, err = tp.ReadLine(); err != nil { return nil, err } // putTextprotoReader函数使用sync.pool来保存textproto.Reader变量,通过重用内存来提升在大量HTTP请求下执行效率。 // 对应函数首部的newTextprotoReader defer func() { putTextprotoReader(tp) if err == io.EOF { err = io.ErrUnexpectedEOF } }() var ok bool // 解析请求方法,请求URL,请求协议 req.Method, req.RequestURI, req.Proto, ok = parseRequestLine(s) if !ok { return nil, &badStringError{"malformed HTTP request", s} } // 判断方法是否包含非法字符 if !validMethod(req.Method) { return nil, &badStringError{"invalid method", req.Method} } // 获取请求路径,如HTTP请求为"http://127.0.0.1:8000/test"时,rawurl为"/test" rawurl := req.RequestURI // 判断HTTP协议版本有效性,通常为支持HTTP/1.x if req.ProtoMajor, req.ProtoMinor, ok = ParseHTTPVersion(req.Proto); !ok { return nil, &badStringError{"malformed HTTP version", req.Proto} } // CONNECT requests are used two different ways, and neither uses a full URL: // The standard use is to tunnel HTTPS through an HTTP proxy. // It looks like "CONNECT www.google.com:443 HTTP/1.1", and the parameter is // just the authority section of a URL. This information should go in req.URL.Host. // // The net/rpc package also uses CONNECT, but there the parameter is a path // that starts with a slash. It can be parsed with the regular URL parser, // and the path will end up in req.URL.Path, where it needs to be in order for // RPC to work. // 处理代理场景,使用"CONNECT"与代理建立连接时会使用完整的URL(带host) justAuthority := req.Method == "CONNECT" && !strings.HasPrefix(rawurl, "/") if justAuthority { rawurl = "http://" + rawurl } if req.URL, err = url.ParseRequestURI(rawurl); err != nil { return nil, err } if justAuthority { // Strip the bogus "http://" back off. req.URL.Scheme = "" } // 解析request首部的key:value mimeHeader, err := tp.ReadMIMEHeader() if err != nil { return nil, err } req.Header = Header(mimeHeader) // RFC 7230, section 5.3: Must treat // GET /index.html HTTP/1.1 // Host: www.google.com // and // GET http://www.google.com/index.html HTTP/1.1 // Host: doesntmatter // the same. In the second case, any Host line is ignored. req.Host = req.URL.Host // 如果是上面注释中的第一种需要从req.Header中获取"Host"字段 if req.Host == "" { req.Host = req.Header.get("Host") } // "Host"字段仅存在于request中,在接收到之后需要删除首部的Host字段,更多参见该变量注释 if deleteHostHeader { delete(req.Header, "Host") } //处理"Cache-Control"首部 fixPragmaCacheControl(req.Header) // 判断是否是长连接,如果是,则保持连接,反之则断开并删除"Connection"首部 req.Close = shouldClose(req.ProtoMajor, req.ProtoMinor, req.Header, false) // 解析首部字段并填充req内容 err = readTransfer(req, b) if err != nil { return nil, err } // 当HTTP1.1服务尝试解析HTTP2的消息时使用"PRI"方法 if req.isH2Upgrade() { // Because it's neither chunked, nor declared: req.ContentLength = -1 // We want to give handlers a chance to hijack the // connection, but we need to prevent the Server from // dealing with the connection further if it's not // hijacked. Set Close to ensure that: req.Close = true } return req, nil }
看下 shouldClose 方法:
func shouldClose(major, minor int, header Header, removeCloseHeader bool) bool { // HTTP/1.x以下不支持"connection"指定长连接 if major < 1 { return true } conv := header["Connection"] // 如果首部包含"Connection: close"则断开连接 hasClose := httpguts.HeaderValuesContainsToken(conv, "close") // 使用HTTP/1.0时,如果包含"Connection: close"或不包含"Connection: keep-alive",则使用短连接; // HTTP/1.1中不指定"Connection",默认使用长连接 if major == 1 && minor == 0 { return hasClose || !httpguts.HeaderValuesContainsToken(conv, "keep-alive") } // 如果使用非长连接,且需要删除首部中的Connection字段。在经过proxy或gateway时必须移除Connection首部字段 if hasClose && removeCloseHeader { header.Del("Connection") } return hasClose }
看下readTransfer方法:
func readTransfer(msg interface{}, r *bufio.Reader) (err error) { t := &transferReader{RequestMethod: "GET"} // Unify input isResponse := false switch rr := msg.(type) { // 消息为响应时的赋值 case *Response: t.Header = rr.Header t.StatusCode = rr.StatusCode t.ProtoMajor = rr.ProtoMajor t.ProtoMinor = rr.ProtoMinor // 响应中不需要Connection首部字段,下面函数最后一个参数设置为true,删除该首部字段 t.Close = shouldClose(t.ProtoMajor, t.ProtoMinor, t.Header, true) isResponse = true if rr.Request != nil { t.RequestMethod = rr.Request.Method } // 消息为请求时的赋值 case *Request: t.Header = rr.Header t.RequestMethod = rr.Method t.ProtoMajor = rr.ProtoMajor t.ProtoMinor = rr.ProtoMinor // Transfer semantics for Requests are exactly like those for // Responses with status code 200, responding to a GET method t.StatusCode = 200 t.Close = rr.Close default: panic("unexpected type") } // Default to HTTP/1.1 if t.ProtoMajor == 0 && t.ProtoMinor == 0 { t.ProtoMajor, t.ProtoMinor = 1, 1 } // 处理"Transfer-Encoding"首部 err = t.fixTransferEncoding() if err != nil { return err } // 处理"Content-Length"首部,注意此处返回的是真实的消息载体长度 realLength, err := fixLength(isResponse, t.StatusCode, t.RequestMethod, t.Header, t.TransferEncoding) if err != nil { return err } // 如果该消息为响应且对应的请求方法为HEAD,如果响应首部包含Content-Length字段,则将此作为响应的ContentLength的值,表示server // 可以接收到的数据的最大长度,由于该响应没有有效载体,此时不能使用fixLength返回的真实长度0 if isResponse && t.RequestMethod == "HEAD" { if n, err := parseContentLength(t.Header.get("Content-Length")); err != nil { return err } else { t.ContentLength = n } } else { t.ContentLength = realLength } // 处理Trailer首部字段,主要进行有消息校验 t.Trailer, err = fixTrailer(t.Header, t.TransferEncoding) if err != nil { return err } // If there is no Content-Length or chunked Transfer-Encoding on a *Response // and the status is not 1xx, 204 or 304, then the body is unbounded. // See RFC 7230, section 3.3. // 含body但不是chunked且不包含length字段的响应称为unbounded(无法衡量长度的消息)消息,根据RFC 7230会被关闭 switch msg.(type) { case *Response: if realLength == -1 && !chunked(t.TransferEncoding) && bodyAllowedForStatus(t.StatusCode) { // Unbounded body. t.Close = true } } // Prepare body reader. ContentLength < 0 means chunked encoding // or close connection when finished, since multipart is not supported yet // 给t.Body赋值 switch { // chunked 场景处理 case chunked(t.TransferEncoding): // 如果请求为HEAD或响应状态码为1xx, 204 or 304,则消息不包含有效载体 if noResponseBodyExpected(t.RequestMethod) || !bodyAllowedForStatus(t.StatusCode) { t.Body = NoBody } else { // 下面会创建chunkedReader t.Body = &body{src: internal.NewChunkedReader(r), hdr: msg, r: r, closing: t.Close} } case realLength == 0: t.Body = NoBody // 非chunked且包含有效载体(对应Content-Length),创建limitReader case realLength > 0: t.Body = &body{src: io.LimitReader(r, realLength), closing: t.Close} default: // realLength < 0, i.e. "Content-Length" not mentioned in header // 此处对于消息有效载体unbounded场景,断开底层连接 if t.Close { // Close semantics (i.e. HTTP/1.0) t.Body = &body{src: r, closing: t.Close} } else { // Persistent connection (i.e. HTTP/1.1) 好像走不到该分支。。。 t.Body = NoBody } } // 为请求/响应结构体赋值并通过指针返回 switch rr := msg.(type) { case *Request: rr.Body = t.Body rr.ContentLength = t.ContentLength rr.TransferEncoding = t.TransferEncoding rr.Close = t.Close rr.Trailer = t.Trailer case *Response: rr.Body = t.Body rr.ContentLength = t.ContentLength rr.TransferEncoding = t.TransferEncoding rr.Close = t.Close rr.Trailer = t.Trailer } return nil } // 1.13.3版本的本函数描述有误,下面代码来自最新master分支func (t *transferReader) fixTransferEncoding() error { // 本函数主要处理"Transfer-Encoding"首部,如果不存在,则直接退出 raw, present := t.Header["Transfer-Encoding"] if !present { return nil } delete(t.Header, "Transfer-Encoding") // Issue 12785; ignore Transfer-Encoding on HTTP/1.0 requests. // HTTP/1.0不处理此首部 if !t.protoAtLeast(1, 1) { return nil } // "Transfer-Encoding"首部字段使用逗号分割 encodings := strings.Split(raw[0], ",") te := make([]string, 0, len(encodings)) // When adding new encodings, please maintain the invariant: // if chunked encoding is present, it must always // come last and it must be applied only once. // See RFC 7230 Section 3.3.1 Transfer-Encoding. // 循环处理各个传输编码,目前仅实现了"chunked" for i, encoding := range encodings { encoding = strings.ToLower(strings.TrimSpace(encoding)) if encoding == "identity" { // "identity" should not be mixed with other transfer-encodings/compressions // because it means "no compression, no transformation". if len(encodings) != 1 { return &badStringError{`"identity" when present must be the only transfer encoding`, strings.Join(encodings, ",")} } // "identity" is not recorded. break } switch { case encoding == "chunked": // "chunked" MUST ALWAYS be the last // encoding as per the loop invariant. // That is: // Invalid: [chunked, gzip] // Valid: [gzip, chunked] if i+1 != len(encodings) { return &badStringError{"chunked must be applied only once, as the last encoding", strings.Join(encodings, ",")} } // Supported otherwise. case isGzipTransferEncoding(encoding): // Supported default: return &unsupportedTEError{fmt.Sprintf("unsupported transfer encoding: %q", encoding)} } te = te[0 : len(te)+1] te[len(te)-1] = encoding } if len(te) > 0 { // RFC 7230 3.3.2 says "A sender MUST NOT send a // Content-Length header field in any message that // contains a Transfer-Encoding header field." // // but also: // "If a message is received with both a // Transfer-Encoding and a Content-Length header // field, the Transfer-Encoding overrides the // Content-Length. Such a message might indicate an // attempt to perform request smuggling (Section 9.5) // or response splitting (Section 9.4) and ought to be // handled as an error. A sender MUST remove the // received Content-Length field prior to forwarding // such a message downstream." // // Reportedly, these appear in the wild. // "Transfer-Encoding"就是为了解决"Content-Length"不存在才出现了,因此当存在"Transfer-Encoding"时无需处理"Content-Length", // 此处删除"Content-Length"首部,不在fixLength函数中处理 delete(t.Header, "Content-Length") t.TransferEncoding = te return nil } return nil } // 本函数处理Content-Length首部,并返回真实的消息载体长度func fixLength(isResponse bool, status int, requestMethod string, header Header, te []string) (int64, error) { isRequest := !isResponse contentLens := header["Content-Length"] // Hardening against HTTP request smuggling if len(contentLens) > 1 { // Per RFC 7230 Section 3.3.2, prevent multiple // Content-Length headers if they differ in value. // If there are dups of the value, remove the dups. // See Issue 16490. // 下面按照RFC 7230的建议进行处理,如果一个Content-Length包含多个不同的value,则认为该消息无效 first := strings.TrimSpace(contentLens[0]) for _, ct := range contentLens[1:] { if first != strings.TrimSpace(ct) { return 0, fmt.Errorf("http: message cannot contain multiple Content-Length headers; got %q", contentLens) } } // 如果一个Content-Length包含多个相同的value,则仅保留一个 header.Del("Content-Length") header.Add("Content-Length", first) contentLens = header["Content-Length"] } // 处理HEAD请求 if noResponseBodyExpected(requestMethod) { // For HTTP requests, as part of hardening against request // smuggling (RFC 7230), don't allow a Content-Length header for // methods which don't permit bodies. As an exception, allow // exactly one Content-Length header if its value is "0". // 当HEAD请求中的Content-Length为0时允许存在该字段 if isRequest && len(contentLens) > 0 && !(len(contentLens) == 1 && contentLens[0] == "0") { return 0, fmt.Errorf("http: method cannot contain a Content-Length; got %q", contentLens) } return 0, nil } // 处理状态码为1xx的响应,不包含消息体 if status/100 == 1 { return 0, nil } // 处理状态码为204和304的响应,不包含消息体 switch status { case 204, 304: return 0, nil } // 包含Transfer-Encoding时无法衡量数据长度,以Transfer-Encoding为准,设置返回长度为-1,直接返回 if chunked(te) { return -1, nil } var cl string // 获取Content-Length字段值 if len(contentLens) == 1 { cl = strings.TrimSpace(contentLens[0]) } // 对Content-Length字段的值进行有效性验证,如果有效则返回该值的整型,无效返回错误 if cl != "" { n, err := parseContentLength(cl) if err != nil { return -1, err } return n, nil } // 数值为空,删除该首部字段 header.Del("Content-Length") // 请求中没有Content-Length且没有Transfer-Encoding字段的请求被认为没有有效载体 if isRequest { // RFC 7230 neither explicitly permits nor forbids an // entity-body on a GET request so we permit one if // declared, but we default to 0 here (not -1 below) // if there's no mention of a body. // Likewise, all other request methods are assumed to have // no body if neither Transfer-Encoding chunked nor a // Content-Length are set. return 0, nil } // Body-EOF logic based on other methods (like closing, or chunked coding) // 消息为响应,该场景后续会在readTransfer被close处理 return -1, nil } func (cr *connReader) startBackgroundRead() { cr.lock() defer cr.unlock() // 表示该连接正在被读取 if cr.inRead { panic("invalid concurrent Body.Read call") } // 表示该连接上是否还有数据 if cr.hasByte { return } cr.inRead = true // 设置底层连接deadline为1<<64 -1 cr.conn.rwc.SetReadDeadline(time.Time{}) // 在新的goroutine中等待数据 go cr.backgroundRead() } func (cr *connReader) backgroundRead() { // 阻塞等待读取一个字节的数 n, err := cr.conn.rwc.Read(cr.byteBuf[:]) cr.lock() // 如果存在数据则设置cr.hasByte为true,byteBuf容量为1 if n == 1 { cr.hasByte = true // We were past the end of the previous request's body already // (since we wouldn't be in a background read otherwise), so // this is a pipelined HTTP request. Prior to Go 1.11 we used to // send on the CloseNotify channel and cancel the context here, // but the behavior was documented as only "may", and we only // did that because that's how CloseNotify accidentally behaved // in very early Go releases prior to context support. Once we // added context support, people used a Handler's // Request.Context() and passed it along. Having that context // cancel on pipelined HTTP requests caused problems. // Fortunately, almost nothing uses HTTP/1.x pipelining. // Unfortunately, apt-get does, or sometimes does. // New Go 1.11 behavior: don't fire CloseNotify or cancel // contexts on pipelined requests. Shouldn't affect people, but // fixes cases like Issue 23921. This does mean that a client // closing their TCP connection after sending a pipelined // request won't cancel the context, but we'll catch that on any // write failure (in checkConnErrorWriter.Write). // If the server never writes, yes, there are still contrived // server & client behaviors where this fails to ever cancel the // context, but that's kinda why HTTP/1.x pipelining died // anyway. } if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() { // Ignore this error. It's the expected error from // another goroutine calling abortPendingRead. } else if err != nil { cr.handleReadError(err) } cr.aborted = false cr.inRead = false cr.unlock() // 当有数据时,通知cr.cond.Wait解锁 cr.cond.Broadcast() }
func (w *response) finishRequest() { w.handlerDone.setTrue() // wroteHeader表示是否已经将响应首部写入,没有则写入 if !w.wroteHeader { w.WriteHeader(StatusOK) } // 此处调用w.cw.write(checkConnErrorWriter) -> c.rwc.write发送数据,即调用底层连接的write将buf中的数据发送出去 w.w.Flush() // 将w.w重置并放入sync.pool中,待后续重用 putBufioWriter(w.w) // 主要构造chunked的结束符:"0 "," ",通过cw.chunking判断是否是chunked编码 w.cw.close() // 发送bufw缓存的数据 w.conn.bufw.Flush() // 用于等待处理未读取完的数据,与connReader.backgroundRead中的cr.cond.Broadcast()对应 w.conn.r.abortPendingRead() // Close the body (regardless of w.closeAfterReply) so we can // re-use its bufio.Reader later safely. w.reqBody.Close() if w.req.MultipartForm != nil { w.req.MultipartForm.RemoveAll() } }
func (w *response) shouldReuseConnection() bool { // 表示是否需要在响应之后关闭底层连接。requestTooLarge,isH2Upgrade或包含首部字段"Connection:close"时置位 if w.closeAfterReply { // The request or something set while executing the // handler indicated we shouldn't reuse this // connection. return false } // 写入数据与"content-length"不匹配,为避免不同步,不重用连接 if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written { // Did not write enough. Avoid getting out of sync. return false } // There was some error writing to the underlying connection // during the request, so don't re-use this conn. // 底层连接出现错误,不可重用 if w.conn.werr != nil { return false } // 判断是否在读取完数据前执行关闭 if w.closedRequestBodyEarly() { return false } return true }
// closeWrite flushes any outstanding data and sends a FIN packet (if // client is connected via TCP), signalling that we're done. We then // pause for a bit, hoping the client processes it before any // subsequent RST. // // See https://golang.org/issue/3595 func (c *conn) closeWriteAndWait() { // 在关闭写之前将缓冲区中的数据发送出去 c.finalFlush() if tcp, ok := c.rwc.(closeWriter); ok { // 执行tcpsock.go中的TCPConn.CloseWrite,调用SHUT_WR关闭写 tcp.CloseWrite() } time.Sleep(rstAvoidanceDelay) }
func (c *conn) finalFlush() { // 本函数中如果c.bufr或c.bufw不为空,都会重置并重用这部分内存 if c.bufr != nil { // Steal the bufio.Reader (~4KB worth of memory) and its associated // reader for a future connection. putBufioReader(c.bufr) c.bufr = nil } if c.bufw != nil { // 将缓存区中的数据全部通过底层发送出去 // respose写数据调用为c.bufw.wr.Write -> checkConnErrorWriter.write -> c.rwc.write,最终通过底层write发送数据 c.bufw.Flush() // Steal the bufio.Writer (~4KB worth of memory) and its associated // writer for a future connection. putBufioWriter(c.bufw) c.bufw = nil } }