zoukankan      html  css  js  c++  java
  • LeetCode

     

    Description

    Say you have an array for which the ith element is the price of a given stock on day i.

    If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

    Example 1:

    Input: [7, 1, 5, 3, 6, 4]
    Output: 5

    max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)

    Example 2:

    Input: [7, 6, 4, 3, 1]
    Output: 0

    Input: [7, 6, 4, 3, 1]
    Output: 0

    In this case, no transaction is done, i.e. max profit = 0.In this case, no transaction is done, i.e. max profit = 0.

    Solution

    A了题目53. maximum subarray之后,这一题思路就比较清晰了,相信各位看官稍动脑筋应该也能想到,或者看代码进行分析。

    当然,特别要注意列表为空的情况(此时应返回0!)

    python

     1 class Solution(object):
     2     def maxProfit(self, prices):
     3         """
     4         :type prices: List[int]
     5         :rtype: int
     6         """
     7         if len(prices) == 0:
     8             return 0
     9 
    10         max_diff = 0
    11         cur_diff = 0
    12         buy_price = prices[0]
    13         for item in prices[1:]:
    14             if item < buy_price:
    15                 buy_price = item
    16                 cur_diff = 0
    17             else:
    18                 cur_diff = item - buy_price
    19                 max_diff = max(max_diff, cur_diff)
    20 
    21         return max_diff

    cpp

     1 class Solution {
     2 public:
     3     int maxProfit(vector<int>& prices) {
     4         if (prices.size()==0)
     5             return 0;
     6 
     7         int buy_price = prices.at(0);
     8         int max_diff = 0;
     9         int cur_diff = 0;
    10         int temp = 0;
    11         for (size_t i=1; i<prices.size(); ++i)
    12         {
    13             temp = prices.at(i);
    14             if (temp < buy_price)
    15             {
    16                 buy_price = temp;
    17                 cur_diff = 0;
    18             }else
    19             {
    20                 cur_diff = temp - buy_price;
    21                 max_diff = (max_diff < cur_diff ? cur_diff : max_diff);
    22             }
    23         }
    24 
    25         return max_diff;
    26     }
    27 };
     
  • 相关阅读:
    MVC之Ajax异步操作
    MVCHtmlHelper使用
    Xamarin.Forms初始
    .NET CORE2.0后台管理系统(一)配置API
    DDD领域驱动之干货(四)补充篇!
    基于官方驱动封装mongodb
    webApi签名验证
    在.Net下使用redis基于StackExchange.Redis
    DDD领域驱动之干货(三)完结篇!
    DDD领域驱动之干货(二)
  • 原文地址:https://www.cnblogs.com/gxcdream/p/7507404.html
Copyright © 2011-2022 走看看