zoukankan      html  css  js  c++  java
  • Android软件开发之高斯模糊问题

    之前看到Android软件中用到和IOS系统类似的模糊效果,自己琢磨着也想做一个,于是在网上搜索了很多的相关资料,发现这篇博客《Android高级模糊技术》写得特别好,所以就开始好好地研究。

    等到我把这个功能做到软件上,问题出现了,什么问题呢?

    本来是准备用模糊图片来作为软件全屏界面的背景,可是布局显示的模糊图片在右下边缘一直出现黑色的边,不能铺满整个屏幕。一开始以为是模糊的参数需要调整,模糊后的图片变小了,但是把模糊后的图片的height和width打印出来,发没有问题。

    后来我想到,实际使用的图片比屏幕的尺寸小一点,而模糊处理的过程之前并没有对图片大小进行调整,导致输出的模糊图片虽然和视图(屏幕)大小一致,但是图片的模糊区域却和原图片相同大小,从而留下了空余的部分——黑色的边缘。于是又写了一个缩放图片的工具类,在模糊处理之前来同步图片和视图(屏幕)的大小,发现问题解决!

    FastBlur.java

     该文件是图片模糊的像素处理类,直接放入工程中

    package com.kuk.tools;
    
    import android.graphics.Bitmap;
    
    public class FastBlur {
    
        public static Bitmap doBlur(Bitmap sentBitmap, int radius, boolean canReuseInBitmap) {
    
            // Stack Blur v1.0 from
            // http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html
            //
            // Java Author: Mario Klingemann <mario at quasimondo.com>
            // http://incubator.quasimondo.com
            // created Feburary 29, 2004
            // Android port : Yahel Bouaziz <yahel at kayenko.com>
            // http://www.kayenko.com
            // ported april 5th, 2012
    
            // This is a compromise between Gaussian Blur and Box blur
            // It creates much better looking blurs than Box Blur, but is
            // 7x faster than my Gaussian Blur implementation.
            //
            // I called it Stack Blur because this describes best how this
            // filter works internally: it creates a kind of moving stack
            // of colors whilst scanning through the image. Thereby it
            // just has to add one new block of color to the right side
            // of the stack and remove the leftmost color. The remaining
            // colors on the topmost layer of the stack are either added on
            // or reduced by one, depending on if they are on the right or
            // on the left side of the stack.
            //
            // If you are using this algorithm in your code please add
            // the following line:
            //
            // Stack Blur Algorithm by Mario Klingemann <mario@quasimondo.com>
    
            Bitmap bitmap;
            if (canReuseInBitmap) {
                bitmap = sentBitmap;
            } else {
                bitmap = sentBitmap.copy(sentBitmap.getConfig(), true);
            }
    
            if (radius < 1) {
                return (null);
            }
    
            int w = bitmap.getWidth();
            int h = bitmap.getHeight();
    
            int[] pix = new int[w * h];
            bitmap.getPixels(pix, 0, w, 0, 0, w, h);
    
            int wm = w - 1;
            int hm = h - 1;
            int wh = w * h;
            int div = radius + radius + 1;
    
            int r[] = new int[wh];
            int g[] = new int[wh];
            int b[] = new int[wh];
            int rsum, gsum, bsum, x, y, i, p, yp, yi, yw;
            int vmin[] = new int[Math.max(w, h)];
    
            int divsum = (div + 1) >> 1;
            divsum *= divsum;
            int dv[] = new int[256 * divsum];
            for (i = 0; i < 256 * divsum; i++) {
                dv[i] = (i / divsum);
            }
    
            yw = yi = 0;
    
            int[][] stack = new int[div][3];
            int stackpointer;
            int stackstart;
            int[] sir;
            int rbs;
            int r1 = radius + 1;
            int routsum, goutsum, boutsum;
            int rinsum, ginsum, binsum;
    
            for (y = 0; y < h; y++) {
                rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
                for (i = -radius; i <= radius; i++) {
                    p = pix[yi + Math.min(wm, Math.max(i, 0))];
                    sir = stack[i + radius];
                    sir[0] = (p & 0xff0000) >> 16;
                    sir[1] = (p & 0x00ff00) >> 8;
                    sir[2] = (p & 0x0000ff);
                    rbs = r1 - Math.abs(i);
                    rsum += sir[0] * rbs;
                    gsum += sir[1] * rbs;
                    bsum += sir[2] * rbs;
                    if (i > 0) {
                        rinsum += sir[0];
                        ginsum += sir[1];
                        binsum += sir[2];
                    } else {
                        routsum += sir[0];
                        goutsum += sir[1];
                        boutsum += sir[2];
                    }
                }
                stackpointer = radius;
    
                for (x = 0; x < w; x++) {
    
                    r[yi] = dv[rsum];
                    g[yi] = dv[gsum];
                    b[yi] = dv[bsum];
    
                    rsum -= routsum;
                    gsum -= goutsum;
                    bsum -= boutsum;
    
                    stackstart = stackpointer - radius + div;
                    sir = stack[stackstart % div];
    
                    routsum -= sir[0];
                    goutsum -= sir[1];
                    boutsum -= sir[2];
    
                    if (y == 0) {
                        vmin[x] = Math.min(x + radius + 1, wm);
                    }
                    p = pix[yw + vmin[x]];
    
                    sir[0] = (p & 0xff0000) >> 16;
                    sir[1] = (p & 0x00ff00) >> 8;
                    sir[2] = (p & 0x0000ff);
    
                    rinsum += sir[0];
                    ginsum += sir[1];
                    binsum += sir[2];
    
                    rsum += rinsum;
                    gsum += ginsum;
                    bsum += binsum;
    
                    stackpointer = (stackpointer + 1) % div;
                    sir = stack[(stackpointer) % div];
    
                    routsum += sir[0];
                    goutsum += sir[1];
                    boutsum += sir[2];
    
                    rinsum -= sir[0];
                    ginsum -= sir[1];
                    binsum -= sir[2];
    
                    yi++;
                }
                yw += w;
            }
            for (x = 0; x < w; x++) {
                rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
                yp = -radius * w;
                for (i = -radius; i <= radius; i++) {
                    yi = Math.max(0, yp) + x;
    
                    sir = stack[i + radius];
    
                    sir[0] = r[yi];
                    sir[1] = g[yi];
                    sir[2] = b[yi];
    
                    rbs = r1 - Math.abs(i);
    
                    rsum += r[yi] * rbs;
                    gsum += g[yi] * rbs;
                    bsum += b[yi] * rbs;
    
                    if (i > 0) {
                        rinsum += sir[0];
                        ginsum += sir[1];
                        binsum += sir[2];
                    } else {
                        routsum += sir[0];
                        goutsum += sir[1];
                        boutsum += sir[2];
                    }
    
                    if (i < hm) {
                        yp += w;
                    }
                }
                yi = x;
                stackpointer = radius;
                for (y = 0; y < h; y++) {
                    // Preserve alpha channel: ( 0xff000000 & pix[yi] )
                    pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum];
    
                    rsum -= routsum;
                    gsum -= goutsum;
                    bsum -= boutsum;
    
                    stackstart = stackpointer - radius + div;
                    sir = stack[stackstart % div];
    
                    routsum -= sir[0];
                    goutsum -= sir[1];
                    boutsum -= sir[2];
    
                    if (x == 0) {
                        vmin[y] = Math.min(y + r1, hm) * w;
                    }
                    p = x + vmin[y];
    
                    sir[0] = r[p];
                    sir[1] = g[p];
                    sir[2] = b[p];
    
                    rinsum += sir[0];
                    ginsum += sir[1];
                    binsum += sir[2];
    
                    rsum += rinsum;
                    gsum += ginsum;
                    bsum += binsum;
    
                    stackpointer = (stackpointer + 1) % div;
                    sir = stack[stackpointer];
    
                    routsum += sir[0];
                    goutsum += sir[1];
                    boutsum += sir[2];
    
                    rinsum -= sir[0];
                    ginsum -= sir[1];
                    binsum -= sir[2];
    
                    yi += w;
                }
            }
    
            bitmap.setPixels(pix, 0, w, 0, 0, w, h);
    
            return (bitmap);
        }
    }
    FastBlur

    PictureZoom.java

    此文件是缩放图片类

     1 import android.content.Context;
     2 import android.graphics.Bitmap;
     3 import android.graphics.Matrix;
     4 
     5 /**
     6  * 此类的功能是用来缩放图片
     7  * <p>
     8  * 防止图片大小和屏幕大小不一致,造成模糊处理后会出现图片显示异常
     9  * </p>
    10  * @author Macneil.Gu
    11  */
    12 public class PictureZoom {
    13 
    14     private Context context;
    15 
    16     public PictureZoom(Context context) {
    17         this.context = context;
    18     }
    19     
    20     /**
    21      * 缩放图片至指定的大小
    22      * 
    23      * @param bitmap Bitmap格式的图片
    24      * @param x 指定的宽
    25      * @param y 指定的长
    26      * @return 缩放后的指定大小图片
    27      */
    28     public Bitmap Zoom(Bitmap bitmap, float x, float y) {
    29         //图片的宽和高
    30         int width = bitmap.getWidth();
    31         int height = bitmap.getHeight();
    32         
    33         //原图片和指定图片宽高比(缩放率),指定/原
    34         float sx = x / width;
    35         float sy = y / height;
    36         
    37         //缩放图片动作
    38         Matrix mtr = new Matrix();
    39         mtr.postScale(sx, sy);
    40         
    41         //创建新的图片
    42         Bitmap bm = Bitmap.createBitmap(bitmap, 0, 0, width, height, mtr, true);
    43         return bm;
    44     }
    45 
    46 }

    MainActivity.java

    高斯模糊处理函数,这里对原来的函数修改了一点点

     1     /**
     2      * 高斯模糊处理
     3      * <p>
     4      * <code>将图片剪裁成1/8后进行模糊处理,可以大大减少模糊处理的时间,提高代码执行效率</code>
     5      * </p>
     6      * @param bitmap 需要模糊处理的图片
     7      * @param view 显示图片的视图
     8      */
     9     private void blur(Bitmap bitmap, View view) {
    10         float scaleFactor = 8;
    11         float radius = 2;
    12 
    13         Bitmap overlay = Bitmap.createBitmap(
    14                 (int) (view.getMeasuredWidth() / scaleFactor),
    15                 (int) (view.getMeasuredHeight() / scaleFactor),
    16                 Bitmap.Config.ARGB_8888);
    17 
    18         Canvas canvas = new Canvas(overlay);
    19         canvas.translate(-view.getLeft() / scaleFactor, -view.getTop()
    20                 / scaleFactor);
    21         canvas.scale(1 / scaleFactor, 1 / scaleFactor);
    22         Paint paint = new Paint();
    23         paint.setFlags(Paint.FILTER_BITMAP_FLAG); // 双缓冲机制
    24         canvas.drawBitmap(bitmap, 0, 0, paint);
    25 
    26         overlay = FastBlur.doBlur(overlay, (int) radius, true);
    27         view.setBackgroundDrawable(new BitmapDrawable(getResources(), overlay));
    28     }

    >>原博文的注解:

    ● scaleFactor提供了需要缩小的等级,在代码中我把bitmap的尺寸缩小到原图的1/8。因为这个bitmap在模糊处理时会先被缩小然后再放大,所以在我的模糊算法中就不用radius这个参数了,所以把它设成2。

    ● 接着需要创建bitmap,这个bitmap比最后需要的小八倍。

    ● 请注意我给Paint提供了FILTER_BITMAP_FLAG标示,这样的话在处理bitmap缩放的时候,就可以达到双缓冲的效果,模糊处理的过程就更加顺畅了。

    ● 接下来和之前一样进行模糊处理操作,这次的图片小了很多,幅度也降低了很多,所以模糊过程非常快。

    ● 把模糊处理后的图片作为背景,它会自动进行放大操作的。

    调用上述的模糊处理函数,对指定图片模糊处理,并显示到布局的ImageView上。

     1  // 获取窗口服务
     2  WindowManager wm = (WindowManager) getSystemService(Context.WINDOW_SERVICE);
     3  
     4  // 缩放图片
     5  PictureZoom pz = new PictureZoom(this);
     6  // 把图片缩放到窗口的长宽
     7  Bitmap mybm = pz.Zoom(bm, wm.getDefaultDisplay().getWidth(), wm.getDefaultDisplay().getHeight()); 
     8 
     9  // 模糊处理,blurImage是ImageView控件,这里是作为背景显示的
    10  blur(mybm, blurImage);

    >>将上述的三个文件放在同一个包下使用,否则需要导入文件使用。如果大家喜欢剖根究底,可以仔细阅读原博文。

    原博文出处:Android高级模糊技术

  • 相关阅读:
    leetcode每日一题:836. 矩形重叠
    单链表之删除头结点,查找等于定值x的结点数,单链表的逆置
    拼数,零幺串
    最大公约数/最小公倍数
    寻找二叉树双亲结点
    Object类的派生-c++
    牛客小白月赛22
    二叉树的基本操作
    字符串的反转,替换,删除
    [2011山东ACM省赛] Identifiers(模拟)
  • 原文地址:https://www.cnblogs.com/gxchexi/p/3982202.html
Copyright © 2011-2022 走看看