zoukankan      html  css  js  c++  java
  • 模糊PID控制算法的C#实现

    跑起来的效果看每个类的test方法,自己调用来测试

    目的是看看哪个算法好用,移植的时候比较单纯没有研究懂算法,代码结构也没改动,只是移植到C#方便查看代码和测试,大家要拷贝也很方便,把整个类拷贝到.cs文件即可

    第一段算法来自 模糊PID控制算法的C++实现 :blog。csdn。net/shuoyueqishilove/article/details/78236541

    这段算法在实际值低于目标值是工作正常,超过后会有问题,不知道如何调教

    using System;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Linq;
    using System.Text;
    using System.Threading.Tasks;
    
    namespace FuzzyPID
    {
        class FuzzyPID
        {
            public const int N = 7;
    
            double target; //系统的控制目标
            double actual; //采样获得的实际值
            double e; //误差
            double e_pre_1; //上一次的误差
            double e_pre_2; //上上次的误差
            double de;      //误差的变化率
            double emax;    //误差基本论域上限
            double demax;   //误差辩化率基本论域的上限
            double delta_Kp_max;   //delta_kp输出的上限
            double delta_Ki_max;   //delta_ki输出上限
            double delta_Kd_max;   //delta_kd输出上限
            double Ke;      //Ke=n/emax,量化论域为[-3,-2,-1,0,1,2,3]
            double Kde;     //Kde=n/demax,量化论域为[-3,-2,-1,0,1,2,3]
            double Ku_p;    //Ku_p=Kpmax/n,量化论域为[-3,-2,-1,0,1,2,3]
            double Ku_i;    //Ku_i=Kimax/n,量化论域为[-3,-2,-1,0,1,2,3]
            double Ku_d;    //Ku_d=Kdmax/n,量化论域为[-3,-2,-1,0,1,2,3]
            int[,] Kp_rule_matrix = new int[N, N];//Kp模糊规则矩阵
            int[,] Ki_rule_matrix = new int[N, N];//Ki模糊规则矩阵
            int[,] Kd_rule_matrix = new int[N, N];//Kd模糊规则矩阵
            string mf_t_e;       //e的隶属度函数类型
            string mf_t_de;      //de的隶属度函数类型
            string mf_t_Kp;      //kp的隶属度函数类型
            string mf_t_Ki;      //ki的隶属度函数类型
            string mf_t_Kd;      //kd的隶属度函数类型
            double[] e_mf_paras; //误差的隶属度函数的参数
            double[] de_mf_paras;//误差的偏差隶属度函数的参数
            double[] Kp_mf_paras; //kp的隶属度函数的参数
            double[] Ki_mf_paras; //ki的隶属度函数的参数
            double[] Kd_mf_paras; //kd的隶属度函数的参数
            double Kp;
            double Ki;
            double Kd;
            double A;
            double B;
            double C;
    
            public FuzzyPID(double e_max, double de_max, double kp_max, double ki_max, double kd_max, double Kp0, double Ki0, double Kd0)
            {
                emax = e_max;
                demax = de_max;
                delta_Kp_max = kp_max;
                delta_Ki_max = ki_max;
                delta_Kd_max = kd_max;
                e = target - actual;
                de = e - e_pre_1;
                Ke = (N / 2) / emax;
                Kde = (N / 2) / demax;
                Ku_p = delta_Kp_max / (N / 2);
                Ku_i = delta_Ki_max / (N / 2);
                Ku_d = delta_Kd_max / (N / 2);
                Kp = Kp0;
                Ki = Ki0;
                Kd = Kd0;
                A = Kp + Ki + Kd;
                B = -2 * Kd - Kp;
                C = Kd;
            }
    
            //三角隶属度函数
            double trimf(double x, double a, double b, double c)
            {
                double u;
                if (x >= a && x <= b)
                    u = (x - a) / (b - a);
                else if (x > b && x <= c)
                    u = (c - x) / (c - b);
                else
                    u = 0;
                return u;
            }
    
            //正态隶属度函数
            double gaussmf(double x, double ave, double sigma)
            {
                double u;
                if (sigma < 0)
                {
                    throw new Exception("In gaussmf, sigma must larger than 0");
                }
                u = Math.Exp(-Math.Pow(((x - ave) / sigma), 2));
                return u;
            }
    
            //梯形隶属度函数
            double trapmf(double x, double a, double b, double c, double d)
            {
                double u;
                if (x >= a && x < b)
                    u = (x - a) / (b - a);
                else if (x >= b && x < c)
                    u = 1;
                else if (x >= c && x <= d)
                    u = (d - x) / (d - c);
                else
                    u = 0;
                return u;
            }
    
    
            //设置模糊规则Matrix
            public void setRuleMatrix(int[,] kp_m, int[,] ki_m, int[,] kd_m)
            {
                for (int i = 0; i < N; i++)
                    for (int j = 0; j < N; j++)
                    {
                        Kp_rule_matrix[i, j] = kp_m[i, j];
                        Ki_rule_matrix[i, j] = ki_m[i, j];
                        Kd_rule_matrix[i, j] = kd_m[i, j];
                    }
    
            }
    
    
            //设置模糊隶属度函数的子函数
            void setMf_sub(string type, double[] paras, int n)
            {
                int N_mf_e = 0, N_mf_de = 0, N_mf_Kp = 0, N_mf_Ki = 0, N_mf_Kd = 0;
                switch (n)
                {
                    case 0:
                        if (type == "trimf" || type == "gaussmf" || type == "trapmf")
                            mf_t_e = type;
                        else
                            throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf"");
                        if (mf_t_e == "trimf")
                            N_mf_e = 3;
                        else if (mf_t_e == "gaussmf")
                            N_mf_e = 2;
                        else if (mf_t_e == "trapmf")
                            N_mf_e = 4;
    
                        e_mf_paras = new double[N * N_mf_e];
                        for (int i = 0; i < N * N_mf_e; i++)
                            e_mf_paras[i] = paras[i];
                        break;
    
                    case 1:
                        if (type == "trimf" || type == "gaussmf" || type == "trapmf")
                            mf_t_de = type;
                        else
                            throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf"");
                        if (mf_t_de == "trimf")
                            N_mf_de = 3;
                        else if (mf_t_de == "gaussmf")
                            N_mf_de = 2;
                        else if (mf_t_de == "trapmf")
                            N_mf_de = 4;
                        de_mf_paras = new double[N * N_mf_de];
                        for (int i = 0; i < N * N_mf_de; i++)
                            de_mf_paras[i] = paras[i];
                        break;
    
                    case 2:
                        if (type == "trimf" || type == "gaussmf" || type == "trapmf")
                            mf_t_Kp = type;
                        else
                            throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf"");
                        if (mf_t_Kp == "trimf")
                            N_mf_Kp = 3;
                        else if (mf_t_Kp == "gaussmf")
                            N_mf_Kp = 2;
                        else if (mf_t_Kp == "trapmf")
                            N_mf_Kp = 4;
                        Kp_mf_paras = new double[N * N_mf_Kp];
                        for (int i = 0; i < N * N_mf_Kp; i++)
                            Kp_mf_paras[i] = paras[i];
                        break;
    
                    case 3:
                        if (type == "trimf" || type == "gaussmf" || type == "trapmf")
                            mf_t_Ki = type;
                        else
                            throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf"");
                        if (mf_t_Ki == "trimf")
                            N_mf_Ki = 3;
                        else if (mf_t_Ki == "gaussmf")
                            N_mf_Ki = 2;
                        else if (mf_t_Ki == "trapmf")
                            N_mf_Ki = 4;
                        Ki_mf_paras = new double[N * N_mf_Ki];
                        for (int i = 0; i < N * N_mf_Ki; i++)
                            Ki_mf_paras[i] = paras[i];
                        break;
    
                    case 4:
                        if (type == "trimf" || type == "gaussmf" || type == "trapmf")
                            mf_t_Kd = type;
                        else
                            throw new Exception("Type of membership function must be "trimf" or "gaussmf" or "trapmf"");
                        if (mf_t_Kd == "trimf")
                            N_mf_Kd = 3;
                        else if (mf_t_Kd == "gaussmf")
                            N_mf_Kd = 2;
                        else if (mf_t_Kd == "trapmf")
                            N_mf_Kd = 4;
                        Kd_mf_paras = new double[N * N_mf_Kd];
                        for (int i = 0; i < N * N_mf_Kd; i++)
                            Kd_mf_paras[i] = paras[i];
                        break;
    
                    default: break;
                }
            }
    
    
            //设置模糊隶属度函数的类型和参数
            public void setMf(string mf_type_e, double[] e_mf,
                 string mf_type_de, double[] de_mf,
                 string mf_type_Kp, double[] Kp_mf,
                 string mf_type_Ki, double[] Ki_mf,
                 string mf_type_Kd, double[] Kd_mf)
            {
                setMf_sub(mf_type_e, e_mf, 0);
                setMf_sub(mf_type_de, de_mf, 1);
                setMf_sub(mf_type_Kp, Kp_mf, 2);
                setMf_sub(mf_type_Ki, Ki_mf, 3);
                setMf_sub(mf_type_Kd, Kd_mf, 4);
            }
    
            //实现模糊控制
            public double realize(double t, double a)
            {
                double[] u_e = new double[N],
                    u_de = new double[N],
                    u_u = new double[N];
                int[] u_e_index = new int[3], u_de_index = new int[3];//假设一个输入最多激活3个模糊子集
                double delta_Kp, delta_Ki, delta_Kd;
                double delta_u;
                target = t;
                actual = a;
                e = target - actual;
                de = e - e_pre_1;
                e = Ke * e;
                de = Kde * de;
                /* 将误差e模糊化*/
                int j = 0;
                for (int i = 0; i < N; i++)
                {
                    if (mf_t_e == "trimf")
                        u_e[i] = trimf(e, e_mf_paras[i * 3], e_mf_paras[i * 3 + 1], e_mf_paras[i * 3 + 2]);//e模糊化,计算它的隶属度
                    else if (mf_t_e == "gaussmf")
                        u_e[i] = gaussmf(e, e_mf_paras[i * 2], e_mf_paras[i * 2 + 1]);//e模糊化,计算它的隶属度
                    else if (mf_t_e == "trapmf")
                        u_e[i] = trapmf(e, e_mf_paras[i * 4], e_mf_paras[i * 4 + 1], e_mf_paras[i * 4 + 2], e_mf_paras[i * 4 + 3]);//e模糊化,计算它的隶属度
    
                    if (u_e[i] != 0)
                        u_e_index[j++] = i;                //存储被激活的模糊子集的下标,可以减小计算量
                }
                for (; j < 3; j++) u_e_index[j] = 0;             //富余的空间填0
    
                /*将误差变化率de模糊化*/
                j = 0;
                for (int i = 0; i < N; i++)
                {
                    if (mf_t_de == "trimf")
                        u_de[i] = trimf(de, de_mf_paras[i * 3], de_mf_paras[i * 3 + 1], de_mf_paras[i * 3 + 2]);//de模糊化,计算它的隶属度
                    else if (mf_t_de == "gaussmf")
                        u_de[i] = gaussmf(de, de_mf_paras[i * 2], de_mf_paras[i * 2 + 1]);//de模糊化,计算它的隶属度
                    else if (mf_t_de == "trapmf")
                        u_de[i] = trapmf(de, de_mf_paras[i * 4], de_mf_paras[i * 4 + 1], de_mf_paras[i * 4 + 2], de_mf_paras[i * 4 + 3]);//de模糊化,计算它的隶属度
    
                    if (u_de[i] != 0)
                        u_de_index[j++] = i;            //存储被激活的模糊子集的下标,可以减小计算量
                }
                for (; j < 3; j++) u_de_index[j] = 0;          //富余的空间填0
    
                double den = 0, num = 0;
                /*计算delta_Kp和Kp*/
                for (int m = 0; m < 3; m++)
                    for (int n = 0; n < 3; n++)
                    {
                        num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Kp_rule_matrix[u_e_index[m], u_de_index[n]];
                        den += u_e[u_e_index[m]] * u_de[u_de_index[n]];
                    }
                delta_Kp = num / den;
                delta_Kp = Ku_p * delta_Kp;
                if (delta_Kp >= delta_Kp_max) delta_Kp = delta_Kp_max;
                else if (delta_Kp <= -delta_Kp_max) delta_Kp = -delta_Kp_max;
                Kp += delta_Kp;
                if (Kp < 0) Kp = 0;
                /*计算delta_Ki和Ki*/
                den = 0; num = 0;
                for (int m = 0; m < 3; m++)
                    for (int n = 0; n < 3; n++)
                    {
                        num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Ki_rule_matrix[u_e_index[m], u_de_index[n]];
                        den += u_e[u_e_index[m]] * u_de[u_de_index[n]];
                    }
    
                delta_Ki = num / den;
                delta_Ki = Ku_i * delta_Ki;
                if (delta_Ki >= delta_Ki_max) delta_Ki = delta_Ki_max;
                else if (delta_Ki <= -delta_Ki_max) delta_Ki = -delta_Ki_max;
                Ki += delta_Ki;
                if (Ki < 0) Ki = 0;
                /*计算delta_Kd和Kd*/
                den = 0; num = 0;
                for (int m = 0; m < 3; m++)
                    for (int n = 0; n < 3; n++)
                    {
                        num += u_e[u_e_index[m]] * u_de[u_de_index[n]] * Kd_rule_matrix[u_e_index[m], u_de_index[n]];
                        den += u_e[u_e_index[m]] * u_de[u_de_index[n]];
                    }
                delta_Kd = num / den;
                delta_Kd = Ku_d * delta_Kd;
                if (delta_Kd >= delta_Kd_max) delta_Kd = delta_Kd_max;
                else if (delta_Kd <= -delta_Kd_max) delta_Kd = -delta_Kd_max;
                Kd += delta_Kd;
                if (Kd < 0) Kd = 0;
    
                A = Kp + Ki + Kd;
                B = -2 * Kd - Kp;
                C = Kd;
                delta_u = A * e + B * e_pre_1 + C * e_pre_2;
    
                delta_u = delta_u / Ke;
    
                if (delta_u >= 0.95 * target) delta_u = 0.95 * target;
                else if (delta_u <= -0.95 * target) delta_u = -0.95 * target;
    
                e_pre_2 = e_pre_1;
                e_pre_1 = e;
    
                return delta_u;
            }
    
            void showMf(string type, double[] mf_paras)
            {
                int tab = 0;
                if (type == "trimf")
                    tab = 2;
                else if (type == "gaussmf")
                    tab = 1;
                else if (type == "trapmf")
                    tab = 3;
                this.WriteLine($"函数类型:{mf_t_e}");
                this.WriteLine("函数参数列表:");
                double[] p = mf_paras;
                for (int i = 0; i < N * (tab + 1); i++)
                {
                    this.Write(p[i] + "  ");
                    if (i % (tab + 1) == tab)
                        this.Write("
    ");
                }
            }
    
            public void showInfo()
            {
                this.WriteLine("Info of this fuzzy controller is as following:");
                this.WriteLine($"基本论域e:[{-emax},{emax}]");
                this.WriteLine($"基本论域de:[{-demax},{demax}]");
                this.WriteLine($"基本论域delta_Kp:[{-delta_Kp_max},{delta_Kp_max}]");
                this.WriteLine($"基本论域delta_Ki:[{-delta_Ki_max},{delta_Ki_max}]");
                this.WriteLine($"基本论域delta_Kd:[{-delta_Kd_max},{delta_Kd_max}]");
                this.WriteLine("误差e的模糊隶属度函数参数:");
                showMf(mf_t_e, e_mf_paras);
                this.WriteLine("误差变化率de的模糊隶属度函数参数:");
                showMf(mf_t_de, de_mf_paras);
                this.WriteLine("delta_Kp的模糊隶属度函数参数:");
                showMf(mf_t_Kp, Kp_mf_paras);
                this.WriteLine("delta_Ki的模糊隶属度函数参数:");
                showMf(mf_t_Ki, Ki_mf_paras);
                this.WriteLine("delta_Kd的模糊隶属度函数参数:");
                showMf(mf_t_Kd, Kd_mf_paras);
                this.WriteLine("模糊规则表:");
                this.WriteLine("delta_Kp的模糊规则矩阵");
                for (int i = 0; i < N; i++)
                {
                    for (int j = 0; j < N; j++)
                    {
                        this.Write(Kp_rule_matrix[i, j]);
                    }
                    this.Write("
    ");
                }
                this.WriteLine("delta_Ki的模糊规则矩阵"); ;
                for (int i = 0; i < N; i++)
                {
                    for (int j = 0; j < N; j++)
                    {
                        this.WriteLine(Ki_rule_matrix[i, j]);
                    }
                    WriteEnd();
                }
                this.WriteLine("delta_Kd的模糊规则矩阵"); ;
                for (int i = 0; i < N; i++)
                {
                    for (int j = 0; j < N; j++)
                    {
                        this.WriteLine(Kd_rule_matrix[i, j]);
                    }
                    WriteEnd();
                }
                this.WriteLine($"误差的量化比例因子Ke={Ke}");
                this.WriteLine($"误差变化率的量化比例因子Kde={Kde}");
                this.WriteLine($"输出的量化比例因子Ku_p={Ku_p}");
                this.WriteLine($"输出的量化比例因子Ku_i={Ku_i}");
                this.WriteLine($"输出的量化比例因子Ku_d={Ku_d}");
                this.WriteLine($"设定目标target={target}");
                this.WriteLine($"误差e={e}");
                this.WriteLine($"Kp={Kp}");
                this.WriteLine($"Ki={Ki}");
                this.WriteLine($"Kd={Kd}");
                WriteEnd();
            }
    
            public void Write(object str)
            {
                Console.Write(str);
            }
            public void WriteLine(object str)
            {
                Console.WriteLine(str);
            }
            public void WriteEnd()
            {
                Console.Write("
    ");
            }
    
    
            public static void test()
            {
                int NB = -3;
                int NM = -2;
                int NS = -1;
                int ZO = 0;
                int PS = 1;
                int PM = 2;
                int PB = 3;
    
                double target = 300;
                double actual = 400;
                double u = 0;
    
                int[,] deltaKpMatrix = new int[7, 7] {{PB,PB,PM,PM,PS,ZO,ZO
        },
                                 {PB,PB,PM,PS,PS,ZO,NS
    },
                                 {PM,PM,PM,PS,ZO,NS,NS},
                                 {PM,PM,PS,ZO,NS,NM,NM},
                                 {PS,PS,ZO,NS,NS,NM,NM},
                                 {PS,ZO,NS,NM,NM,NM,NB},
                                 {ZO,ZO,NM,NM,NM,NB,NB}};
                int[,] deltaKiMatrix = new int[7, 7]{{NB,NB,NM,NM,NS,ZO,ZO},
                                 {NB,NB,NM,NS,NS,ZO,ZO},
                                 {NB,NM,NS,NS,ZO,PS,PS},
                                 {NM,NM,NS,ZO,PS,PM,PM},
                                 {NM,NS,ZO,PS,PS,PM,PB},
                                 {ZO,ZO,PS,PS,PM,PB,PB},
                                 {ZO,ZO,PS,PM,PM,PB,PB}};
                int[,] deltaKdMatrix = new int[7, 7]{{PS,NS,NB,NB,NB,NM,PS},
                                 {PS,NS,NB,NM,NM,NS,ZO},
                                 {ZO,NS,NM,NM,NS,NS,ZO},
                                 {ZO,NS,NS,NS,NS,NS,ZO},
                                 {ZO,ZO,ZO,ZO,ZO,ZO,ZO},
                                 {PB,NS,PS,PS,PS,PS,PB},
                                 {PB,PM,PM,PM,PS,PS,PB}};
                double[] e_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 };
                double[] de_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 };
                double[] Kp_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 };
                double[] Ki_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 };
                double[] Kd_mf_paras = { -3, -3, -2, -3, -2, -1, -2, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 3 };
    
                var fuzzypid = new FuzzyPID(1500, 1000, 0.3, 0.9, 0.6, 0.01, 0.04, 0.01);
                fuzzypid.setMf("trimf", e_mf_paras, "trimf", de_mf_paras, "trimf", Kp_mf_paras, "trimf", Ki_mf_paras, "trimf", Kd_mf_paras);
                fuzzypid.setRuleMatrix(deltaKpMatrix, deltaKiMatrix, deltaKdMatrix);
    
                for (int i = 0; i < 50; i++)
                {
                    u = fuzzypid.realize(target, actual);
                    actual += u;
                    Console.WriteLine($"{i}   {target}  {u}  {actual}");
    
                    //if (i>19)
                    //{
                    //    target = 300;
                    //}
                }
                //fuzzypid.showInfo();
    
            }
    
        }
    }

    第二段来自  模糊PID控制温控系统设计方案C语言程序代码: wenku。baidu。com/view/e62a94fbf342336c1eb91a37f111f18583d00cda.html

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    using System.Threading.Tasks;
    
    namespace FuzzyPID
    {
        class FuzzyPID2
        {
            int flag;
            int flag_start;
            double S_temp = 60.0;
            double P_temp = 20.0;
            double Kp;
            double Ki;
            double Kd;
            double Err = 0.0;
            double Last_Err = 0.0;
            double D_Err = 0.0;
            double Sum_Err = 0.0;
            double U = 0.0;
    
            //函数功能:PID的计算
            void PID_Calculate()
            {
                Err = S_temp - P_temp;
                Sum_Err += Err;
                D_Err = Err - Last_Err;
                Last_Err = Err;
                U = Kp * Err + Ki * Sum_Err + Kd * D_Err;
                if (U >= 0)
                {
                    if (U >= 200) U = 200;
                    flag = 1;
                }
                else
                {
                    U = -U;
                    if (U >= 200) U = 200;
                    flag = 0;
                }
            }
    
            /***********************************************
               函数功能:PID参数Kp的计算 
      ************************************************/
            double fuzzy_kp(double e, double ec)               //e,ec,表示误差,误差变化率
            {
                double Kp_calcu;
                int num, pe, pec;
                double[] eRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 };   //误差E的模糊论域
                double[] ecRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 }; //误差变化率EC的模糊论域
                double[] eFuzzy = { 0.0, 0.0 };                 //隶属于误差E的隶属程度
                double[] ecFuzzy = { 0.0, 0.0 };            //隶属于误差变化率EC的隶属程度
                double[] kpRule = { 0.0, 8.0, 16.0, 24.0 };         //Kp的模糊子集
                double[] KpFuzzy = { 0.0, 0.0, 0.0, 0.0 };              //隶属于Kp的隶属程度
                int[,] KpRule =                         //Kp的模糊控制表  7, 7
                    {
                       { 3,3,3,3,3,3,3 },
                       { 2,2,2,2,1,2,2 },
                       { 1,1,1,1,1,1,1 },
                       { 1,1,0,1,0,1,1 },
                       { 0,0,1,0,0,1,0 },
                       { 0,1,0,1,0,0,2 },
                       { 3,3,3,3,3,3,3 }
                    };
                /*****误差E隶属函数描述*****/
                if (e < eRule[0])
                {
                    eFuzzy[0] = 1.0;
                    pe = 0;
                }
                else if (eRule[0] <= e && e < eRule[1])
                {
                    eFuzzy[0] = (eRule[1] - e) / (eRule[1] - eRule[0]);
                    pe = 0;
                }
                else if (eRule[1] <= e && e < eRule[2])
                {
                    eFuzzy[0] = (eRule[2] - e) / (eRule[2] - eRule[1]);
                    pe = 1;
                }
                else if (eRule[2] <= e && e < eRule[3])
                {
                    eFuzzy[0] = (eRule[3] - e) / (eRule[3] - eRule[2]);
                    pe = 2;
                }
                else if (eRule[3] <= e && e < eRule[4])
                {
                    eFuzzy[0] = (eRule[4] - e) / (eRule[4] - eRule[3]);
                    pe = 3;
                }
                else if (eRule[4] <= e && e < eRule[5])
                {
                    eFuzzy[0] = (eRule[5] - e) / (eRule[5] - eRule[4]);
                    pe = 4;
                }
                else if (eRule[5] <= e && e < eRule[6])
                {
                    eFuzzy[0] = (eRule[6] - e) / (eRule[6] - eRule[5]);
                    pe = 5;
                }
                else
                {
                    eFuzzy[0] = 0.0;
                    pe = 5;
                }
                eFuzzy[1] = 1.0 - eFuzzy[0];
                /*****误差变化率EC隶属函数描述*****/
                if (ec < ecRule[0])
                {
                    ecFuzzy[0] = 1.0;
                    pec = 0;
                }
                else if (ecRule[0] <= ec && ec < ecRule[1])
                {
                    ecFuzzy[0] = (ecRule[1] - ec) / (ecRule[1] - ecRule[0]);
                    pec = 0;
                }
                else if (ecRule[1] <= ec && ec < ecRule[2])
                {
                    ecFuzzy[0] = (ecRule[2] - ec) / (ecRule[2] - ecRule[1]);
                    pec = 1;
                }
                else if (ecRule[2] <= ec && ec < ecRule[3])
                {
                    ecFuzzy[0] = (ecRule[3] - ec) / (ecRule[3] - ecRule[2]);
                    pec = 2;
                }
                else if (ecRule[3] <= ec && ec < ecRule[4])
                {
                    ecFuzzy[0] = (ecRule[4] - ec) / (ecRule[4] - ecRule[3]);
                    pec = 3;
                }
                else if (ecRule[4] <= ec && ec < ecRule[5])
                {
                    ecFuzzy[0] = (ecRule[5] - ec) / (ecRule[5] - ecRule[4]);
                    pec = 4;
                }
                else if (ecRule[5] <= ec && ec < ecRule[6])
                {
                    ecFuzzy[0] = (ecRule[6] - ec) / (ecRule[6] - ecRule[5]);
                    pec = 5;
                }
                else
                {
                    ecFuzzy[0] = 0.0;
                    pec = 5;
                }
                ecFuzzy[1] = 1.0 - ecFuzzy[0];
                /*********查询模糊规则表*********/
                num = KpRule[pe, pec];
                KpFuzzy[num] += eFuzzy[0] * ecFuzzy[0];
                num = KpRule[pe, pec + 1];
                KpFuzzy[num] += eFuzzy[0] * ecFuzzy[1];
                num = KpRule[pe + 1, pec];
                KpFuzzy[num] += eFuzzy[1] * ecFuzzy[0];
                num = KpRule[pe + 1, pec + 1];
                KpFuzzy[num] += eFuzzy[1] * ecFuzzy[1];
                /*********加权平均法解模糊*********/
                Kp_calcu = KpFuzzy[0] * kpRule[0] + KpFuzzy[1] * kpRule[1] + KpFuzzy[2] * kpRule[2]
    + KpFuzzy[3] * kpRule[3];
                return (Kp_calcu);
            }
    
            /***********************************************
             函数功能:PID参数Ki的计算 
    ************************************************/
            double fuzzy_ki(double e, double ec)
            {
                double Ki_calcu;
                int num, pe, pec;
                double[] eRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 };
                double[] ecRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 };
                double[] eFuzzy = { 0.0, 0.0 };
                double[] ecFuzzy = { 0.0, 0.0 };
                double[] kiRule = { 0.00, 0.01, 0.02, 0.03 };
                double[] KiFuzzy = { 0.0, 0.0, 0.0, 0.0 };
                int[,] KiRule =
                        {
                            { 0,0,0,0,0,0,0 },
                            { 0,0,0,0,0,0,0 },
                            { 0,0,0,0,0,0,0 },
                            { 0,0,0,0,0,0,0 },
                            { 0,0,0,0,0,0,0 },
                            { 2,0,0,0,0,0,1 },
                            { 3,3,3,3,3,3,3 }
    
                        };
                /*****误差隶属函数描述*****/
                if (e < eRule[0])
                {
                    eFuzzy[0] = 1.0;
                    pe = 0;
                }
                else if (eRule[0] <= e && e < eRule[1])
                {
                    eFuzzy[0] = (eRule[1] - e) / (eRule[1] - eRule[0]);
                    pe = 0;
                }
                else if (eRule[1] <= e && e < eRule[2])
                {
                    eFuzzy[0] = (eRule[2] - e) / (eRule[2] - eRule[1]);
                    pe = 1;
                }
                else if (eRule[2] <= e && e < eRule[3])
                {
                    eFuzzy[0] = (eRule[3] - e) / (eRule[3] - eRule[2]);
                    pe = 2;
                }
                else if (eRule[3] <= e && e < eRule[4])
                {
                    eFuzzy[0] = (eRule[4] - e) / (eRule[4] - eRule[3]);
                    pe = 3;
                }
                else if (eRule[4] <= e && e < eRule[5])
                {
                    eFuzzy[0] = (eRule[5] - e) / (eRule[5] - eRule[4]);
                    pe = 4;
                }
                else if (eRule[5] <= e && e < eRule[6])
                {
                    eFuzzy[0] = (eRule[6] - e) / (eRule[6] - eRule[5]);
                    pe = 5;
                }
                else
                {
                    eFuzzy[0] = 0.0;
                    pe = 5;
                }
                eFuzzy[1] = 1.0 - eFuzzy[0];
                /*****误差变化隶属函数描述*****/
                if (ec < ecRule[0])
                {
                    ecFuzzy[0] = 1.0;
                    pec = 0;
                }
                else if (ecRule[0] <= ec && ec < ecRule[1])
                {
                    ecFuzzy[0] = (ecRule[1] - ec) / (ecRule[1] - ecRule[0]);
                    pec = 0;
                }
                else if (ecRule[1] <= ec && ec < ecRule[2])
                {
                    ecFuzzy[0] = (ecRule[2] - ec) / (ecRule[2] - ecRule[1]);
                    pec = 1;
                }
                else if (ecRule[2] <= ec && ec < ecRule[3])
                {
                    ecFuzzy[0] = (ecRule[3] - ec) / (ecRule[3] - ecRule[2]);
                    pec = 2;
                }
                else if (ecRule[3] <= ec && ec < ecRule[4])
                {
                    ecFuzzy[0] = (ecRule[4] - ec) / (ecRule[4] - ecRule[3]);
                    pec = 3;
                }
                else if (ecRule[4] <= ec && ec < ecRule[5])
                {
                    ecFuzzy[0] = (ecRule[5] - ec) / (ecRule[5] - ecRule[4]);
                    pec = 4;
                }
                else if (ecRule[5] <= ec && ec < ecRule[6])
                {
                    ecFuzzy[0] = (ecRule[6] - ec) / (ecRule[6] - ecRule[5]);
                    pec = 5;
                }
                else
                {
                    ecFuzzy[0] = 0.0;
                    pec = 5;
                }
                ecFuzzy[1] = 1.0 - ecFuzzy[0];
                /***********查询模糊规则表***************/
                num = KiRule[pe, pec];
                KiFuzzy[num] += eFuzzy[0] * ecFuzzy[0];
                num = KiRule[pe, pec + 1];
                KiFuzzy[num] += eFuzzy[0] * ecFuzzy[1];
                num = KiRule[pe + 1, pec];
                KiFuzzy[num] += eFuzzy[1] * ecFuzzy[0];
                num = KiRule[pe + 1, pec + 1];
                KiFuzzy[num] += eFuzzy[1] * ecFuzzy[1];
                /********加权平均法解模糊********/
                Ki_calcu = KiFuzzy[0] * kiRule[0] + KiFuzzy[1] * kiRule[1] + KiFuzzy[2] * kiRule[2]
    + KiFuzzy[3] * kiRule[3];
                return (Ki_calcu);
            }
    
            /***********************************************
             函数功能:PID参数Kd的计算 
    ************************************************/
            double fuzzy_kd(double e, double ec)
            {
                double Kd_calcu;
                int num, pe, pec;
                double[] eRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 };
                double[] ecRule = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0 };
                double[] eFuzzy = { 0.0, 0.0 };
                double[] ecFuzzy = { 0.0, 0.0 };
                double[] kdRule = { 0.0, 1.0, 2.0, 3.0 };
                double[] KdFuzzy = { 0.0, 0.0, 0.0, 0.0 };
                int[,] KdRule =
                            {
                                { 3,3,3,2,2,2,2 },
                                { 2,2,2,1,1,1,1 },
                                { 1,1,2,1,1,2,1 },
                                { 1,1,0,1,0,1,1 },
                                { 1,1,0,0,0,1,1 },
                                { 2,2,1,0,1,1,1 },
                                { 3,3,3,3,2,3,2 }
                            };
                /*****误差隶属函数描述*****/
                if (e < eRule[0])
                {
                    eFuzzy[0] = 1.0;
                    pe = 0;
                }
                else if (eRule[0] <= e && e < eRule[1])
                {
                    eFuzzy[0] = (eRule[1] - e) / (eRule[1] - eRule[0]);
                    pe = 0;
                }
                else if (eRule[1] <= e && e < eRule[2])
                {
                    eFuzzy[0] = (eRule[2] - e) / (eRule[2] - eRule[1]);
                    pe = 1;
                }
                else if (eRule[2] <= e && e < eRule[3])
                {
                    eFuzzy[0] = (eRule[3] - e) / (eRule[3] - eRule[2]);
                    pe = 2;
                }
                else if (eRule[3] <= e && e < eRule[4])
                {
                    eFuzzy[0] = (eRule[4] - e) / (eRule[4] - eRule[3]);
                    pe = 3;
                }
                else if (eRule[4] <= e && e < eRule[5])
                {
                    eFuzzy[0] = (eRule[5] - e) / (eRule[5] - eRule[4]);
                    pe = 4;
                }
                else if (eRule[5] <= e && e < eRule[6])
                {
                    eFuzzy[0] = (eRule[6] - e) / (eRule[6] - eRule[5]);
                    pe = 5;
                }
                else
                {
                    eFuzzy[0] = 0.0;
                    pe = 5;
                }
                eFuzzy[1] = 1.0 - eFuzzy[0];
    
                /*****误差变化隶属函数描述*****/
                if (ec < ecRule[0])
                {
                    ecFuzzy[0] = 1.0;
                    pec = 0;
                }
                else if (ecRule[0] <= ec && ec < ecRule[1])
                {
                    ecFuzzy[0] = (ecRule[1] - ec) / (ecRule[1] - ecRule[0]);
                    pec = 0;
                }
                else if (ecRule[1] <= ec && ec < ecRule[2])
                {
                    ecFuzzy[0] = (ecRule[2] - ec) / (ecRule[2] - ecRule[1]);
                    pec = 1;
                }
                else if (ecRule[2] <= ec && ec < ecRule[3])
                {
                    ecFuzzy[0] = (ecRule[3] - ec) / (ecRule[3] - ecRule[2]);
                    pec = 2;
                }
                else if (ecRule[3] <= ec && ec < ecRule[4])
                {
                    ecFuzzy[0] = (ecRule[4] - ec) / (ecRule[4] - ecRule[3]);
                    pec = 3;
                }
                else if (ecRule[4] <= ec && ec < ecRule[5])
                {
                    ecFuzzy[0] = (ecRule[5] - ec) / (ecRule[5] - ecRule[4]);
                    pec = 4;
                }
                else if (ecRule[5] <= ec && ec < ecRule[6])
                {
                    ecFuzzy[0] = (ecRule[6] - ec) / (ecRule[6] - ecRule[5]);
                    pec = 5;
                }
                else
                {
                    ecFuzzy[0] = 0.0;
                    pec = 5;
                }
                ecFuzzy[1] = 1.0 - ecFuzzy[0];
                /***********查询模糊规则表*************/
                num = KdRule[pe, pec];
                KdFuzzy[num] += eFuzzy[0] * ecFuzzy[0];
                num = KdRule[pe, pec + 1];
                KdFuzzy[num] += eFuzzy[0] * ecFuzzy[1];
                num = KdRule[pe + 1, pec];
                KdFuzzy[num] += eFuzzy[1] * ecFuzzy[0];
                num = KdRule[pe + 1, pec + 1];
                KdFuzzy[num] += eFuzzy[1] * ecFuzzy[1];
                /********加权平均法解模糊********/
                Kd_calcu = KdFuzzy[0] * kdRule[0] + KdFuzzy[1] * kdRule[1] + KdFuzzy[2] * kdRule[2]
        + KdFuzzy[3] * kdRule[3];
                return (Kd_calcu);
            }
    
    
    
            public void test()
            {
    
                for (int i = 0; i < 50; i++)
                {
                    this.PID_Calculate();
                    Kp = this.fuzzy_kp(Err / 5, D_Err);              //E量化因子5
                    Ki = this.fuzzy_ki(Err / 5, D_Err);
                    Kd = this.fuzzy_kd(Err / 5, D_Err);
                    Console.WriteLine($"{S_temp}  {P_temp}  {Kp}  {Ki}  {Kd}");
                    if (S_temp > P_temp)
                    {
                        P_temp += U / 10;
                    }
                    else
                    {
                        P_temp -= U / 10;
                    }
                    if (i > 20)
                    {
                        S_temp = 30;
                    }
                }
            }
    
    
        }
    }
  • 相关阅读:
    几种归一化方法的概念及python实现
    python 中几种基本的矩阵操作应用
    exec 命令简单用法 和 find 搭配用法示例
    使用git在github上创建新工程
    gcc编译参数详解概述
    此心不明,能有何为
    多个文件目录下Makefile的写法
    《高效能程序员的修炼》读后思考之写作的重要性
    音频格式RAW和PCM区别和联系
    SWIG 基本概念和入门
  • 原文地址:https://www.cnblogs.com/gxrsprite/p/12155890.html
Copyright © 2011-2022 走看看