zoukankan      html  css  js  c++  java
  • 亿级流量场景下,大型架构设计实现【全文检索高级搜索---ElasticSearch篇】-- 上

     正文前先来一波福利推荐:

    福利一:

    百万年薪架构师视频,该视频可以学到很多东西,是本人花钱买的VIP课程,学习消化了一年,为了支持一下女朋友公众号也方便大家学习,共享给大家。

    福利二:

    毕业答辩以及工作上各种答辩,平时积累了不少精品PPT,现在共享给大家,大大小小加起来有几千套,总有适合你的一款,很多是网上是下载不到。

    获取方式:

    微信关注 精品3分钟 ,id为 jingpin3mins,关注后回复   百万年薪架构师 ,精品收藏PPT  获取云盘链接,谢谢大家支持!

    ------------------------正文开始---------------------------

    1、大白话、什么是Elasticsearch

    Elasticsearch,分布式,高性能,高可用,可伸缩的搜索和分析系统

    1、什么是搜索?
    2、如果用数据库做搜索会怎么样?
    3、什么是全文检索、倒排索引和Lucene?
    4、什么是Elasticsearch?

    ------------------------------------------------------------------------------------------------------------------------

    1、什么是搜索?

    百度:我们比如说想找寻任何的信息的时候,就会上百度去搜索一下,比如说找一部自己喜欢的电影,或者说找一本喜欢的书,或者找一条感兴趣的新闻(提到搜索的第一印象)
    百度 != 搜索,这是不对的

    垂直搜索(站内搜索)

    互联网的搜索:电商网站,招聘网站,新闻网站,各种app
    IT系统的搜索:OA软件,办公自动化软件,会议管理,日程管理,项目管理,员工管理,搜索“张三”,“张三儿”,“张小三”;有个电商网站,卖家,后台管理系统,搜索“牙膏”,订单,“牙膏相关的订单”

    搜索,就是在任何场景下,找寻你想要的信息,这个时候,会输入一段你要搜索的关键字,然后就期望找到这个关键字相关的有些信息

    ------------------------------------------------------------------------------------------------------------------------

    2、如果用数据库做搜索会怎么样?

    做软件开发的话,或者对IT、计算机有一定的了解的话,都知道,数据都是存储在数据库里面的,比如说电商网站的商品信息,招聘网站的职位信息,新闻网站的新闻信息,等等吧。所以说,很自然的一点,如果说从技术的角度去考虑,如何实现如说,电商网站内部的搜索功能的话,就可以考虑,去使用数据库去进行搜索。

    1、比方说,每条记录的指定字段的文本,可能会很长,比如说“商品描述”字段的长度,有长达数千个,甚至数万个字符,这个时候,每次都要对每条记录的所有文本进行扫描,懒判断说,你包不包含我指定的这个关键词(比如说“牙膏”)
    2、还不能将搜索词拆分开来,尽可能去搜索更多的符合你的期望的结果,比如输入“生化机”,就搜索不出来“生化危机”

    用数据库来实现搜索,是不太靠谱的。通常来说,性能会很差的。

    ------------------------------------------------------------------------------------------------------------------------

    3、什么是全文检索和Lucene?

    (1)全文检索,倒排索引
    (2)lucene,就是一个jar包,里面包含了封装好的各种建立倒排索引,以及进行搜索的代码,包括各种算法。我们就用java开发的时候,引入lucene jar,然后基于lucene的api进行去进行开发就可以了。

        用lucene,我们就可以去将已有的数据建立索引,lucene会在本地磁盘上面,给我们组织索引的数据结构。另外的话,我们也可以用lucene提供的一些功能和api来针对磁盘上额

    ------------------------------------------------------------------------------------------------------------------------

    4、什么是Elasticsearch?

    (1)图解分析

     

     ---------------------------------------------------------------------------------------------------------

    2、Elasticsearch功能以及适用场景

    1、Elasticsearch的功能,干什么的
    2、Elasticsearch的适用场景,能在什么地方发挥作用
    3、Elasticsearch的特点,跟其他类似的东西不同的地方在哪里

    1、Elasticsearch的功能

    (1)分布式的搜索引擎和数据分析引擎

    搜索:百度,网站的站内搜索,IT系统的检索
    数据分析:电商网站,最近7天牙膏这种商品销量排名前10的商家有哪些;新闻网站,最近1个月访问量排名前3的新闻版块是哪些
    分布式,搜索,数据分析

    (2)全文检索,结构化检索,数据分析

    全文检索:我想搜索商品名称包含牙膏的商品,select * from products where product_name like "%牙膏%"
    结构化检索:我想搜索商品分类为日化用品的商品都有哪些,select * from products where category_id='日化用品'
    部分匹配、自动完成、搜索纠错、搜索推荐
    数据分析:我们分析每一个商品分类下有多少个商品,select category_id,count(*) from products group by category_id

    (3)对海量数据进行近实时的处理

    分布式:ES自动可以将海量数据分散到多台服务器上去存储和检索
    海量数据的处理:分布式以后,就可以采用大量的服务器去存储和检索数据,自然而然就可以实现海量数据的处理了
    近实时:检索个数据要花费1小时(这就不叫近实时,离线批处理,batch-processing);在秒级别对数据进行搜索和分析

    跟分布式/海量数据相反的:lucene,单机应用,只能在单台服务器上使用,最多只能处理单台服务器可以处理的数据量

    2、Elasticsearch的适用场景

    国外

    (1)维基百科,类似百度百科,牙膏,牙膏的维基百科,全文检索,高亮,搜索推荐
    (2)The Guardian(国外新闻网站),类似搜狐新闻,用户行为日志(点击,浏览,收藏,评论)+社交网络数据(对某某新闻的相关看法),数据分析,给到每篇新闻文章的作者,让他知道他的文章的公众反馈(好,坏,热门,垃圾,鄙视,崇拜)
    (3)Stack Overflow(国外的程序异常讨论论坛),IT问题,程序的报错,提交上去,有人会跟你讨论和回答,全文检索,搜索相关问题和答案,程序报错了,就会将报错信息粘贴到里面去,搜索有没有对应的答案
    (4)GitHub(开源代码管理),搜索上千亿行代码
    (5)电商网站,检索商品
    6)日志数据分析,logstash采集日志,ES进行复杂的数据分析(ELK技术,elasticsearch+logstash+kibana)
    (7)商品价格监控网站,用户设定某商品的价格阈值,当低于该阈值的时候,发送通知消息给用户,比如说订阅牙膏的监控,如果高露洁牙膏的家庭套装低于50块钱,就通知我,我就去买
    (8)BI系统,商业智能,Business Intelligence。比如说有个大型商场集团,BI,分析一下某某区域最近3年的用户消费金额的趋势以及用户群体的组成构成,产出相关的数张报表,**区,最近3年,每年消费金额呈现100%的增长,而且用户群体85%是高级白领,开一个新商场。ES执行数据分析和挖掘,Kibana进行数据可视化

    国内

    (9)国内:站内搜索(电商,招聘,门户,等等),IT系统搜索(OA,CRM,ERP,等等),数据分析(ES热门的一个使用场景)

    3、Elasticsearch的特点

    (1)可以作为一个大型分布式集群(数百台服务器)技术,处理PB级数据,服务大公司;也可以运行在单机上,服务小公司
    (2)Elasticsearch不是什么新技术,主要是将全文检索、数据分析以及分布式技术,合并在了一起,才形成了独一无二的ES;lucene(全文检索),商用的数据分析软件(也是有的),分布式数据库(mycat)
    (3)对用户而言,是开箱即用的,非常简单,作为中小型的应用,直接3分钟部署一下ES,就可以作为生产环境的系统来使用了,数据量不大,操作不是太复杂
    (4)数据库的功能面对很多领域是不够用的(事务,还有各种联机事务型的操作);特殊的功能,比如全文检索,同义词处理,相关度排名,复杂数据分析,海量数据的近实时处理;Elasticsearch作为传统数据库的一个补充,提供了数据库所不不能提供的很多功能

     ----------------------------------------------------------------------------------------------------------------------

     3、手工画图剖析Elasticsearch核心概念:NRT、索引、分片、副本等 [高质量和大小] [高质量和大小]

    1、lucene和elasticsearch的前世今生
    2、elasticsearch的核心概念
    3、elasticsearch核心概念 vs. 数据库核心概念

    ----------------------------------------------------------------------------------------------------------------------------------------

    1、lucene和elasticsearch的前世今生

    lucene,最先进、功能最强大的搜索库,直接基于lucene开发,非常复杂,api复杂(实现一些简单的功能,写大量的java代码),需要深入理解原理(各种索引结构)

    elasticsearch,基于lucene,隐藏复杂性,提供简单易用的restful api接口、java api接口(还有其他语言的api接口)
    (1)分布式的文档存储引擎
    (2)分布式的搜索引擎和分析引擎
    (3)分布式,支持PB级数据

    开箱即用,优秀的默认参数,不需要任何额外设置,完全开源

    关于elasticsearch的一个传说,有一个程序员失业了,陪着自己老婆去英国伦敦学习厨师课程。程序员在失业期间想给老婆写一个菜谱搜索引擎,觉得lucene实在太复杂了,就开发了一个封装了lucene的开源项目,compass。后来程序员找到了工作,是做分布式的高性能项目的,觉得compass不够,就写了elasticsearch,让lucene变成分布式的系统。

    ----------------------------------------------------------------------------------------------------------------------------------------

    2、elasticsearch的核心概念

    (1)Near Realtime(NRT):近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒);基于es执行搜索和分析可以达到秒级

    (2)Cluster:集群,包含多个节点,每个节点属于哪个集群是通过一个配置(集群名称,默认是elasticsearch)来决定的,对于中小型应用来说,刚开始一个集群就一个节点很正常
    (3)Node:节点,集群中的一个节点,节点也有一个名称(默认是随机分配的),节点名称很重要(在执行运维管理操作的时候),默认节点会去加入一个名称为“elasticsearch”的集群,如果直接启动一堆节点,那么它们会自动组成一个elasticsearch集群,当然一个节点也可以组成一个elasticsearch集群

    (4)Document&field:文档,es中的最小数据单元,一个document可以是一条客户数据,一条商品分类数据,一条订单数据,通常用JSON数据结构表示,每个index下的type中,都可以去存储多个document。一个document里面有多个field,每个field就是一个数据字段。

    product document

    {
    "product_id": "1",
    "product_name": "高露洁牙膏",
    "product_desc": "高效美白",
    "category_id": "2",
    "category_name": "日化用品"
    }

    (5)Index:索引,包含一堆有相似结构的文档数据,比如可以有一个客户索引,商品分类索引,订单索引,索引有一个名称。一个index包含很多document,一个index就代表了一类类似的或者相同的document。比如说建立一个product index,商品索引,里面可能就存放了所有的商品数据,所有的商品document。
    (6)Type:类型,每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field,比如博客系统,有一个索引,可以定义用户数据type,博客数据type,评论数据type。

    --------------------------------------------------------------------------

    商品index,里面存放了所有的商品数据,商品document

    但是商品分很多种类,每个种类的document的field可能不太一样,比如说电器商品,可能还包含一些诸如售后时间范围这样的特殊field;生鲜商品,还包含一些诸如生鲜保质期之类的特殊field

    type,日化商品type,电器商品type,生鲜商品type

    日化商品type:product_id,product_name,product_desc,category_id,category_name
    电器商品type:product_id,product_name,product_desc,category_id,category_name,service_period
    生鲜商品type:product_id,product_name,product_desc,category_id,category_name,eat_period

    每一个type里面,都会包含一堆document

    {
    "product_id": "2",
    "product_name": "长虹电视机",
    "product_desc": "4k高清",
    "category_id": "3",
    "category_name": "电器",
    "service_period": "1年"
    }


    {
    "product_id": "3",
    "product_name": "基围虾",
    "product_desc": "纯天然,冰岛产",
    "category_id": "4",
    "category_name": "生鲜",
    "eat_period": "7天"
    }

    (7)shard:单台机器无法存储大量数据,es可以将一个索引中的数据切分为多个shard,分布在多台服务器上存储。有了shard就可以横向扩展,存储更多数据,让搜索和分析等操作分布到多台服务器上去执行,提升吞吐量和性能。每个shard都是一个lucene index。
    (8)replica:任何一个服务器随时可能故障或宕机,此时shard可能就会丢失,因此可以为每个shard创建多个replica副本。replica可以在shard故障时提供备用服务,保证数据不丢失,多个replica还可以提升搜索操作的吞吐量和性能。primary shard(建立索引时一次设置,不能修改,默认5个),replica shard(随时修改数量,默认1个),默认每个索引10个shard,5个primary shard,5个replica shard,最小的高可用配置,是2台服务器。

    **************************************** 图示解析原理 ************************************

     

    ----------------------------------------------------------------------------------------------------------------------------------------

    3、elasticsearch核心概念 vs. 数据库核心概念

    Elasticsearch   |    数据库

    -----------------------------------------

    Document       |        行
    Type               |       表
    Index              |       库

    -----------------------------------------------------------------------------------------------------------------------

    4、ES的安装

    1、安装JDK,至少1.8.0_73以上版本,java -version
    2、下载和解压缩Elasticsearch安装包,目录结构
    3、启动Elasticsearch:binelasticsearch.bat,es本身特点之一就是开箱即用,如果是中小型应用,数据量少,操作不是很复杂,直接启动就可以用了

    4、检查ES是否启动成功:http://localhost:9200/?pretty

    name: node名称
    cluster_name: 集群名称(默认的集群名称就是elasticsearch)
    version.number: 5.2.0,es版本号

    {
    "name" : "4onsTYV",
    "cluster_name" : "elasticsearch",
    "cluster_uuid" : "nKZ9VK_vQdSQ1J0Dx9gx1Q",
    "version" : {
    "number" : "5.2.0",
    "build_hash" : "24e05b9",
    "build_date" : "2017-01-24T19:52:35.800Z",
    "build_snapshot" : false,
    "lucene_version" : "6.4.0"
    },
    "tagline" : "You Know, for Search"
    }

    5、修改集群名称:elasticsearch.yml
    6、下载和解压缩Kibana安装包,使用里面的开发界面,去操作elasticsearch,作为我们学习es知识点的一个主要的界面入口
    7、启动Kibana:binkibana.bat


    8、进入Dev Tools界面
    9、GET _cluster/health

    5、集群健康检查,文档CRUD

        ----------------------------面向文档的搜索分析引擎

    1)应用系统的数据结构都是面向对象的,复杂的
    2)对象数据存储到数据库中,只能拆解开来,变为扁平的多张表,每次查询的时候还得还原回对象格式,相当麻烦

    传统数据库应用系统格式:

    --------------------------------------------------------------------------------------------------------------------

    public class Employee {

    private String email;
    private String firstName;
    private String lastName;
    private EmployeeInfo info;
    private Date joinDate;

    }

    private class EmployeeInfo {

    private String bio; // 性格
    private Integer age;
    private String[] interests; // 兴趣爱好

    }

    EmployeeInfo info = new EmployeeInfo();
    info.setBio("curious and modest");
    info.setAge(30);
    info.setInterests(new String[]{"bike", "climb"});

    Employee employee = new Employee();
    employee.setEmail("zhangsan@sina.com");
    employee.setFirstName("san");
    employee.setLastName("zhang");
    employee.setInfo(info);
    employee.setJoinDate(new Date());

    employee对象:里面包含了Employee类自己的属性,还有一个EmployeeInfo对象

    两张表:employee表,employee_info表,将employee对象的数据重新拆开来,变成Employee数据和EmployeeInfo数据
    employee表:email,first_name,last_name,join_date,4个字段
    employee_info表:bio,age,interests,3个字段;此外还有一个外键字段,比如employee_id,关联着employee表

    3)、ES是面向文档的,文档中存储的数据结构,与面向对象的数据结构是一样的,基于这种文档数据结构,es可以提供复杂的索引,全文检索,分析聚合等功能
    4)、es的document用json数据格式来表达

    ES格式:

    ---------------------------------------------------------------------------------------------------------------------------

    {
    "email": "zhangsan@sina.com",
    "first_name": "san",
    "last_name": "zhang",
    "info": {
    "bio": "curious and modest",
    "age": 30,
    "interests": [ "bike", "climb" ]
    },
    "join_date": "2017/01/01"
    }

    我们就明白了es的document数据格式和数据库的关系型数据格式的区别

    ----------------------------------------------------------------------------------------------------------------------------

    2、电商网站商品管理案例背景介绍

    有一个电商网站,需要为其基于ES构建一个后台系统,提供以下功能:

    (1)对商品信息进行CRUD(增删改查)操作
    (2)执行简单的结构化查询
    (3)可以执行简单的全文检索,以及复杂的phrase(短语)检索
    (4)对于全文检索的结果,可以进行高亮显示
    (5)对数据进行简单的聚合分析

    ----------------------------------------------------------------------------------------------------------------------------

    3、简单的集群管理

    (1)快速检查集群的健康状况

    es提供了一套api,叫做cat api,可以查看es中各种各样的数据

    GET /_cat/health?v

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
    1488006741 15:12:21 elasticsearch yellow 1 1 1 1 0 0 1 0 - 50.0%

    epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
    1488007113 15:18:33 elasticsearch green 2 2 2 1 0 0 0 0 - 100.0%

    epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
    1488007216 15:20:16 elasticsearch yellow 1 1 1 1 0 0 1 0 - 50.0%

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    如何快速了解集群的健康状况?green、yellow、red?

    green:每个索引的primary shard和replica shard都是active状态的
    yellow:每个索引的primary shard都是active状态的,但是部分replica shard不是active状态,处于不可用的状态
    red:不是所有索引的primary shard都是active状态的,部分索引有数据丢失了

    为什么现在会处于一个yellow状态?

    我们现在就一个笔记本电脑,就启动了一个es进程,相当于就只有一个node。现在es中有一个index,就是kibana自己内置建立的index。由于默认的配置是给每个index分配5个primary shard和5个replica shard,而且primary shard和replica shard不能在同一台机器上(为了容错)。现在kibana自己建立的index是1个primary shard和1个replica shard。当前就一个node,所以只有1个primary shard被分配了和启动了,但是一个replica shard没有第二台机器去启动。

    做一个小实验:此时只要启动第二个es进程,就会在es集群中有2个node,然后那1个replica shard就会自动分配过去,然后cluster status就会变成green状态。

    (2)快速查看集群中有哪些索引

    GET /_cat/indices?v

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
    yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    (3)简单的索引操作

    创建索引:PUT /test_index?pretty

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
    yellow open test_index XmS9DTAtSkSZSwWhhGEKkQ 5 1 0 0 650b 650b
    yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    删除索引:DELETE /test_index?pretty

    health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
    yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb

    ----------------------------------------------------------------------------------------------------------------------------

    4、商品的CRUD操作

    (1)新增商品:新增文档,建立索引

    PUT /index/type/id
    {
    "json数据"
    }

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    PUT /ecommerce/product/1
    {
    "name" : "gaolujie yagao",
    "desc" : "gaoxiao meibai",
    "price" : 30,
    "producer" : "gaolujie producer",
    "tags": [ "meibai", "fangzhu" ]
    }

    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "_version": 1,
    "result": "created",
    "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
    },
    "created": true
    }

    PUT /ecommerce/product/2
    {
    "name" : "jiajieshi yagao",
    "desc" : "youxiao fangzhu",
    "price" : 25,
    "producer" : "jiajieshi producer",
    "tags": [ "fangzhu" ]
    }

    PUT /ecommerce/product/3
    {
    "name" : "zhonghua yagao",
    "desc" : "caoben zhiwu",
    "price" : 40,
    "producer" : "zhonghua producer",
    "tags": [ "qingxin" ]
    }

    es会自动建立index和type,不需要提前创建,而且es默认会对document每个field都建立倒排索引,让其可以被搜索

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    (2)查询商品:检索文档

    GET /index/type/id

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    GET /ecommerce/product/1

    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "_version": 1,
    "found": true,
    "_source": {
    "name": "gaolujie yagao",
    "desc": "gaoxiao meibai",
    "price": 30,
    "producer": "gaolujie producer",
    "tags": [
    "meibai",
    "fangzhu"
    ]
    }
    }

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    (3)修改商品:替换文档

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    PUT /ecommerce/product/1
    {
    "name" : "jiaqiangban gaolujie yagao",
    "desc" : "gaoxiao meibai",
    "price" : 30,
    "producer" : "gaolujie producer",
    "tags": [ "meibai", "fangzhu" ]
    }

    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "_version": 1,
    "result": "created",
    "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
    },
    "created": true
    }

    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "_version": 2,
    "result": "updated",
    "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
    },
    "created": false
    }


    PUT /ecommerce/product/1
    {
    "name" : "jiaqiangban gaolujie yagao"
    }

    替换方式有一个不好,即使必须带上所有的field,才能去进行信息的修改

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    (4)修改商品:更新文档

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    POST /ecommerce/product/1/_update
    {
    "doc": {
    "name": "jiaqiangban gaolujie yagao"
    }
    }

    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "_version": 8,
    "result": "updated",
    "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
    }
    }

    我的风格,其实有选择的情况下,不太喜欢念ppt,或者照着文档做,或者直接粘贴写好的代码,尽量是纯手敲代码

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    (5)删除商品:删除文档

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    DELETE /ecommerce/product/1

    {
    "found": true,
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "_version": 9,
    "result": "deleted",
    "_shards": {
    "total": 2,
    "successful": 1,
    "failed": 0
    }
    }

    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "found": false
    }

     ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    6、演示多种查询方式

    课程大纲

    1、query string search
    2、query DSL
    3、query filter
    4、full-text search
    5、phrase search
    6、highlight search

    ---------------------------------------------------------------------------------------------------------------------------------

    把英文翻译成中文,让我觉得很别扭,term,词项

    1、query string search 

          -------------  在生产环境中,几乎很少使用query string search

    搜索全部商品:

    took:耗费了几毫秒
    timed_out:是否超时,这里是没有
    _shards:数据拆成了5个分片,所以对于搜索请求,会打到所有的primary shard(或者是它的某个replica shard也可以)
    hits.total:查询结果的数量,3个document
    hits.max_score:score的含义,就是document对于一个search的相关度的匹配分数,越相关,就越匹配,分数也高
    hits.hits:包含了匹配搜索的document的详细数据

    GET /ecommerce/product/_search

    -------------------------------------------------------------------------------------------------------------------------------

    {
    "took": 2,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
    },
    "hits": {
    "total": 3,
    "max_score": 1,
    "hits": [
    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "2",
    "_score": 1,
    "_source": {
    "name": "jiajieshi yagao",
    "desc": "youxiao fangzhu",
    "price": 25,
    "producer": "jiajieshi producer",
    "tags": [
    "fangzhu"
    ]
    }
    },
    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "_score": 1,
    "_source": {
    "name": "gaolujie yagao",
    "desc": "gaoxiao meibai",
    "price": 30,
    "producer": "gaolujie producer",
    "tags": [
    "meibai",
    "fangzhu"
    ]
    }
    },
    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "3",
    "_score": 1,
    "_source": {
    "name": "zhonghua yagao",
    "desc": "caoben zhiwu",
    "price": 40,
    "producer": "zhonghua producer",
    "tags": [
    "qingxin"
    ]
    }
    }
    ]
    }
    }

    query string search的由来,因为search参数都是以http请求的query string来附带的

    搜索商品名称中包含yagao的商品,而且按照售价降序排序:GET /ecommerce/product/_search?q=name:yagao&sort=price:desc

    适用于临时的在命令行使用一些工具,比如curl,快速的发出请求,来检索想要的信息;但是如果查询请求很复杂,是很难去构建的.

    ---------------------------------------------------------------------------------------------------------------------------------

    2、query DSL 

               -----------更加适合生产环境的使用,可以构建复杂的查询

    DSL:Domain Specified Language,特定领域的语言
    http request body:请求体,可以用json的格式来构建查询语法,比较方便,可以构建各种复杂的语法,比query string search肯定强大多了

    ---------------------------------------------------------------------------------------------------------------------------------

    查询所有的商品

    GET /ecommerce/product/_search
    {
    "query": { "match_all": {} }
    }

    ---------------------------------------------------------------------------------------------------------------------------------

    查询名称包含yagao的商品,同时按照价格降序排序

    GET /ecommerce/product/_search
    {
    "query" : {
    "match" : {
    "name" : "yagao"
    }
    },
    "sort": [
    { "price": "desc" }
    ]
    }

    ---------------------------------------------------------------------------------------------------------------------------------

    分页查询商品,总共3条商品,假设每页就显示1条商品,现在显示第2页,所以就查出来第2个商品

    GET /ecommerce/product/_search
    {
    "query": { "match_all": {} },
    "from": 1,
    "size": 1
    }

    ---------------------------------------------------------------------------------------------------------------------------------

    指定要查询出来商品的名称和价格就可以

    GET /ecommerce/product/_search
    {
    "query": { "match_all": {} },
    "_source": ["name", "price"]
    }

    ---------------------------------------------------------------------------------------------------------------------------------

    3、query filter

    搜索商品名称包含yagao,而且售价大于25元的商品

    GET /ecommerce/product/_search
    {
    "query" : {
    "bool" : {
    "must" : {
    "match" : {
    "name" : "yagao"
    }
    },
    "filter" : {
    "range" : {
    "price" : { "gt" : 25 }
    }
    }
    }
    }
    }

    ---------------------------------------------------------------------------------------------------------------------------------

    4、full-text search(全文检索)

    ---------------------------------------------------------------------------------------------------------------------------------

    GET /ecommerce/product/_search
    {
    "query" : {
    "match" : {
    "producer" : "yagao producer"
    }
    }
    }

    尽量,无论是学什么技术,比如说你当初学java,学linux,学shell,学javascript,学hadoop。。。。一定自己动手,特别是手工敲各种命令和代码,切记切记,减少复制粘贴的操作。只有自己动手手工敲,学习效果才最好。

    producer这个字段,会先被拆解,建立倒排索引:

    special 4
    yagao 4
    producer 1,2,3,4
    gaolujie 1
    zhognhua 3
    jiajieshi 2

    yagao producer ---> yagao和producer

    {
    "took": 4,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
    },
    "hits": {
    "total": 4,
    "max_score": 0.70293105,
    "hits": [
    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "4",
    "_score": 0.70293105,
    "_source": {
    "name": "special yagao",
    "desc": "special meibai",
    "price": 50,
    "producer": "special yagao producer",
    "tags": [
    "meibai"
    ]
    }
    },
    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "1",
    "_score": 0.25811607,
    "_source": {
    "name": "gaolujie yagao",
    "desc": "gaoxiao meibai",
    "price": 30,
    "producer": "gaolujie producer",
    "tags": [
    "meibai",
    "fangzhu"
    ]
    }
    },
    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "3",
    "_score": 0.25811607,
    "_source": {
    "name": "zhonghua yagao",
    "desc": "caoben zhiwu",
    "price": 40,
    "producer": "zhonghua producer",
    "tags": [
    "qingxin"
    ]
    }
    },
    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "2",
    "_score": 0.1805489,
    "_source": {
    "name": "jiajieshi yagao",
    "desc": "youxiao fangzhu",
    "price": 25,
    "producer": "jiajieshi producer",
    "tags": [
    "fangzhu"
    ]
    }
    }
    ]
    }
    }

    ---------------------------------------------------------------------------------------------------------------------------------

    5、phrase search(短语搜索)

    跟全文检索相对应,相反,全文检索会将输入的搜索串拆解开来,去倒排索引里面去一一匹配,只要能匹配上任意一个拆解后的单词,就可以作为结果返回
    phrase search,要求输入的搜索串,必须在指定的字段文本中,完全包含一模一样的,才可以算匹配,才能作为结果返回

     ---------------------------------------------------------------------------------------------------------------------------------

    GET /ecommerce/product/_search
    {
    "query" : {
    "match_phrase" : {
    "producer" : "yagao producer"
    }
    }
    }

    {
    "took": 11,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
    },
    "hits": {
    "total": 1,
    "max_score": 0.70293105,
    "hits": [
    {
    "_index": "ecommerce",
    "_type": "product",
    "_id": "4",
    "_score": 0.70293105,
    "_source": {
    "name": "special yagao",
    "desc": "special meibai",
    "price": 50,
    "producer": "special yagao producer",
    "tags": [
    "meibai"
    ]
    }
    }
    ]
    }
    }

    ---------------------------------------------------------------------------------------------------------------------------------

    6、highlight search(高亮搜索结果)

    ---------------------------------------------------

    GET /ecommerce/product/_search
    {
    "query" : {
    "match" : {
    "producer" : "producer"
    }
    },
    "highlight": {
    "fields" : {
    "producer" : {}
    }
    }
    }

    --------------------------------------------------------------------------------------------------------------------------------- 

    嵌套聚合,下钻分析,聚合分析

    第一个分析需求:计算每个tag下的商品数量

    GET /ecommerce/product/_search
    {
    "aggs": {
    "group_by_tags": {
    "terms": { "field": "tags" }
    }
    }
    }

    将文本field的fielddata属性设置为true

    PUT /ecommerce/_mapping/product
    {
    "properties": {
    "tags": {
    "type": "text",
    "fielddata": true
    }
    }
    }

    GET /ecommerce/product/_search
    {
    "size": 0,
    "aggs": {
    "all_tags": {
    "terms": { "field": "tags" }
    }
    }
    }

    {
    "took": 20,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
    },
    "hits": {
    "total": 4,
    "max_score": 0,
    "hits": []
    },
    "aggregations": {
    "group_by_tags": {
    "doc_count_error_upper_bound": 0,
    "sum_other_doc_count": 0,
    "buckets": [
    {
    "key": "fangzhu",
    "doc_count": 2
    },
    {
    "key": "meibai",
    "doc_count": 2
    },
    {
    "key": "qingxin",
    "doc_count": 1
    }
    ]
    }
    }
    }

    ----------------------------------------------------------------------------------------------------------------

    第二个聚合分析的需求:对名称中包含yagao的商品,计算每个tag下的商品数量

    GET /ecommerce/product/_search
    {
    "size": 0,
    "query": {
    "match": {
    "name": "yagao"
    }
    },
    "aggs": {
    "all_tags": {
    "terms": {
    "field": "tags"
    }
    }
    }
    }

    ----------------------------------------------------------------------------------------------------------------

    第三个聚合分析的需求:先分组,再算每组的平均值,计算每个tag下的商品的平均价格

    GET /ecommerce/product/_search
    {
    "size": 0,
    "aggs" : {
    "group_by_tags" : {
    "terms" : { "field" : "tags" },
    "aggs" : {
    "avg_price" : {
    "avg" : { "field" : "price" }
    }
    }
    }
    }
    }

    {
    "took": 8,
    "timed_out": false,
    "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
    },
    "hits": {
    "total": 4,
    "max_score": 0,
    "hits": []
    },
    "aggregations": {
    "group_by_tags": {
    "doc_count_error_upper_bound": 0,
    "sum_other_doc_count": 0,
    "buckets": [
    {
    "key": "fangzhu",
    "doc_count": 2,
    "avg_price": {
    "value": 27.5
    }
    },
    {
    "key": "meibai",
    "doc_count": 2,
    "avg_price": {
    "value": 40
    }
    },
    {
    "key": "qingxin",
    "doc_count": 1,
    "avg_price": {
    "value": 40
    }
    }
    ]
    }
    }
    }

    ----------------------------------------------------------------------------------------------------------------

    第四个数据分析需求:计算每个tag下的商品的平均价格,并且按照平均价格降序排序

    GET /ecommerce/product/_search
    {
    "size": 0,
    "aggs" : {
    "all_tags" : {
    "terms" : { "field" : "tags", "order": { "avg_price": "desc" } },
    "aggs" : {
    "avg_price" : {
    "avg" : { "field" : "price" }
    }
    }
    }
    }
    }

    我们现在全部都是用es的restful api在学习和讲解es的所欲知识点和功能点,但是没有使用一些编程语言去讲解(比如java),原因有以下:

    1、es最重要的api,让我们进行各种尝试、学习甚至在某些环境下进行使用的api,就是restful api。如果你学习不用es restful api,比如我上来就用java api来讲es,也是可以的,但是你根本就漏掉了es知识的一大块,你都不知道它最重要的restful api是怎么用的
    2、讲知识点,用es restful api,更加方便,快捷,不用每次都写大量的java代码,能加快讲课的效率和速度,更加易于同学们关注es本身的知识和功能的学习
    3、我们通常会讲完es知识点后,开始详细讲解java api,如何用java api执行各种操作
    4、我们每个篇章都会搭配一个项目实战,项目实战是完全基于java去开发的真实项目和系统

    ----------------------------------------------------------------------------------------------------------------

    第五个数据分析需求:按照指定的价格范围区间进行分组,然后在每组内再按照tag进行分组,最后再计算每组的平均价格

    GET /ecommerce/product/_search
    {
    "size": 0,
    "aggs": {
    "group_by_price": {
    "range": {
    "field": "price",
    "ranges": [
    {
    "from": 0,
    "to": 20
    },
    {
    "from": 20,
    "to": 40
    },
    {
    "from": 40,
    "to": 50
    }
    ]
    },
    "aggs": {
    "group_by_tags": {
    "terms": {
    "field": "tags"
    },
    "aggs": {
    "average_price": {
    "avg": {
    "field": "price"
    }
    }
    }
    }
    }
    }
    }
    }

    --------------------------------------------------------------------------------------------------------------------- 上 完成。

  • 相关阅读:
    flutter开发环境的搭建
    创建一个android项目
    android studio 安装与配置
    sentinel-dashboard.jar 安装
    三:nacos的配置中心
    二:nacos 的服务注册
    spring boot 在windows下的 批文件部署
    一:nacos 的安装与启动方式
    mysql 命令行安装方式
    Git 出现 Permission denied 时,重新生成ssh密钥
  • 原文地址:https://www.cnblogs.com/gxyandwmm/p/10664239.html
Copyright © 2011-2022 走看看