import numpy as np
#(1)零均值化
def zeroMean(dataMat):
    meanVal=np.mean(dataMat,axis=0)
    newData =dataMat -meanVal
    return newData, meanVal
#3、选择主成分个数
def percentage2n(eigVals,percentage):
    sortArray=np.sort(eigVals)   #升序
    sortArray=sortArray[-1::-1]  #逆转,即降序
    arraySum=sum(sortArray)
    tmpSum=0
    num=0
    for i in sortArray:
        tmpSum+=i
        num+=1
        if tmpSum>=arraySum*percentage:
            return num
#pca算法
def pca(dataMat,percentage=0.99):
    # (1)零均值化
    newData, meanVal = zeroMean(dataMat)
    # 求协方差矩阵
    covMat = np.cov(newData, rowvar=0)
    # (3)求特征值、特征矩阵
    eigVals, eigVects = np.linalg.eig(np.mat(covMat))
    n =percentage2n(eigVals,percentage)
    # eigVals 特征值和eigVects特征向量
    eigValIndice = np.argsort(eigVals)
    #所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】
    n_eigValIndice = eigValIndice[-1:-(n + 1):-1]  # 最大的n个特征值的下标
    n_eigVect = eigVects[:, n_eigValIndice]  # 最大的n个特征值对应的特征向量
    lowDDataMat = newData * n_eigVect  # 低维特征空间的数据
    reconMat = (lowDDataMat * n_eigVect.T) + meanVal  # 重构数据
    return lowDDataMat, reconMat
def main():
    data = [[10.2352,11.322],
            [10.1223,11.811],
            [9.1902,8.9049],
            [9.3064,9.8474],
            [8.3301,8.3404],
            [10.1528,10.1235],
            [10.4085,10.822],
            [9.0036,10.0392],
            [9.5349,10.097],
            [9.4982,10.8254]]
    lowDDataMat, reconMat = pca(data,0.9)
    print(lowDDataMat)
if __name__=="__main__":
    main()