zoukankan      html  css  js  c++  java
  • A. 自闭的序列

    A. 自闭的序列

    给一个长度为(n)的非负整数序列(A)

    求一个A的长度在(L,R)之间的连续子序列,并且他们所有元素的平均值最大。

    你只要输出这个最大值就可以了。

    输入格式

    第一行包含三个整数(n,L,R)

    接下来一行(n)个数,表示序列A。

    输出格式

    包括一行一个实数表示答案,保留四位小数。

    样例

    样例一

    input

    3 2 3
    6 2 8
    

    output

    5.3333
    

    约定与限制

    对于(20\%) 的数据,满足 (1 le n le 200)

    对于(40\%) 的数据,满足 (1 le n le 2 000)

    对于(100\%) 的数据 ,满足 (1 le n le 20000,0le a_ile 10^9,1le Lle Rle N)

    时间限制:1s

    空间限制:128MB


    解题报告

    题意理解

    找一段区间,要求区间长度(lenin[l,r]),找到一个区间,使得它的平均值最大

    (40pts)思路

    我们可以想到,首先(O(n))枚举区间长度(len),然后我们可以,在用(O(n))的时间遍历区间的左端点(l),此时区间就是([l,l+len-1])

    然后统计这个区间的平均值,在这里的,我们可以提前预处理出

    [sum[i]=sumlimits_{n=1} ^ N a_i ]

    那么在这里

    [[l,r]平均值=frac{(sum[r]-sum[l-1])}{(r-l+1)} ]


    如果你思路类似于下面这段代码,直接枚举左端点和右端点,你的得分将是(90pts),。
    因为数据太水了

    代码如下

    #include <bits/stdc++.h>
    using namespace std;
    const int N=2e4+10;
    int n,l,r,a[N],sum[N];
    inline void init()
    {
    	scanf("%d%d%d",&n,&l,&r);
    	for(int i=1; i<=n; i++)
    		scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i];
    	double ans=0;
    	for(int a=1; a<=n; a++)//左端点
    		for(int b=a+l-1; b<=a+r-1 && b<=n; b++)//右端点
    		{
    			int cnt=sum[b]-sum[a-1];//统计这个区间的总和
    			ans=max(ans,cnt*1.0/(b-a+1));//平均值选取最大
    		}
    	printf("%.4lf
    ",ans);
    }
    signed main()
    {
    	init();
    	return 0;
    }
    

    (100pts)思路

    当我们看到这道题目,答案是个小数的时候,应该不难想到二分算法。

    而本题之所以可以使用二分算法,是因为题目答案具有单调性质

    我们可以二分答案,判断是否存在一个平均值(ge y)的区间,这样就可以找到最终答案。

    因为,如果说答案是(x),那么显然 (forall y le x),都可以满足,因为最终答案的区间,他们平均值一定满足(ge y)

    那么我们接下来需要讨论,如何在(O(n))的时间,判断是否有区间合法。


    [设len表示区间的长度 \\ len(a,b)表示区间[a,b]长度 ]

    现在要求我们,找到一个(l le len le r)的区间,满足他的平均值要大于(y)

    此时我们可以使用单调队列满足本题。

    我们知道单调队列 拥有两大性质

    1. 队列中的元素具有顺序
    2. 队列中元素具有某种单调性质

    如果说现在有两个区间。([a,i],[b,i])

    此时满足(sum[a,i] le sum[b,i] 而且 a le b)

    那么此时,我们应该选择([b,i])区间,而不是([a,i])区间。

    因为(len(b,i) le len(a,i) quad & quad sum[b,i] ge sum[a,i])

    那么此时,我们需要将单调队列的细节进行处理。

    1. 队头表示什么?
      满足区间长度限制,而且在队列中,(sum[head,i])最大
    2. 队尾表示什么?
      满足区间长度限制,在队列中区间长度最短。
    3. 从哪里进入队列?
      从队尾,因为此时元素和当前节点构成的区间最短。
    4. 如何将一个元素从队列退出?
      队头元素,不满足区间长度限制,则删除。
      队尾元素,面对新来的节点,不满足上面所述的单调性质,则删除。
      从上所述,这就是我们的单调队列的处理。
    #include <bits/stdc++.h>
    using namespace std;
    #define eps 1e-6
    #define Sum(a,b) (sum[(b)]-sum[(a)-1])//计算区间[a,b]的和
    const int N=2e4+20;
    int n,l,r,q[N<<1];
    double a[N],sum[N],L,R;
    inline int check(double x)
    {
    	for(int i=1; i<=n; i++)
    		sum[i]=sum[i-1]+(a[i]-x);//将每个元素减去平均值,那么原来要求转化为,找到一段区间,使其和>=0即可
    	int head=1,tail=0;
    	for(int i=l; i<=n; i++)//右端点枚举
    	{
    		while(head<=tail && Sum(q[tail],i)<=Sum(i-l+1,i))//[q[tail],i]的值小于[i-l+1,i]
    			tail--;
    		q[++tail]=i-l+1;//存储当前区间左端点
    		while(head<=tail && (i-q[head]+1)>r)//删去区间长度>r的左端点
    			head++;
    		if (Sum(q[head],i)>=0)//此时这一段区间平均值大于等于x
    			return 1;
    	}
    	return 0;
    }
    inline void init()
    {
    //	freopen("ff.in","r",stdin);
    	scanf("%d%d%d",&n,&l,&r);
    	for(int i=1; i<=n; i++)
    		scanf("%lf",&a[i]),R=max(R,a[i]);
    	while(R-L>eps)//实数的二分答案
    	{
    		double mid=(L+R)/2.0;
    		if (check(mid))
    			L=mid;
    		else
    			R=mid;
    	}
    	printf("%.4lf
    ",R);
    }
    signed main()
    {
    	init();
    	return 0;
    }
    
  • 相关阅读:
    LeetCoded第21题题解--合并两个有序链表
    入门数据结构与算法,看这一个就够了,知识点+LeetCode实战演练
    LeetCoded第242题题解--java--数组
    映射Map、队列Queue、优先级队列PriorityQueue
    链表LinkedList、堆栈Stack、集合Set
    bzoj1588: [HNOI2002]营业额统计
    bzoj3223: Tyvj 1729 文艺平衡树
    bzoj1503: [NOI2004]郁闷的出纳员
    hdu1700 Points on Cycle
    poj1981 Circle and Points
  • 原文地址:https://www.cnblogs.com/gzh-red/p/13752316.html
Copyright © 2011-2022 走看看