zoukankan      html  css  js  c++  java
  • Java多线程学习-AQS

    本文主要学习Java多线程的核心类:AbstractQueuedSynchronizer,检查AQS。

    先来看一下此类描述:

    用来构建锁或其他同步器组件的重要级基础框架及整个JUC体系的基石,通过内置的FIFO队列来完成资源获取线程的排队工作,并通过一个int类型变量表示持有锁的状态。

    /**
     * Provides a framework for implementing blocking locks and related
     * synchronizers (semaphores, events, etc) that rely on
     * first-in-first-out (FIFO) wait queues.  This class is designed to
     * be a useful basis for most kinds of synchronizers that rely on a
     * single atomic {@code int} value to represent state. Subclasses
     * must define the protected methods that change this state, and which
     * define what that state means in terms of this object being acquired
     * or released.  Given these, the other methods in this class carry
     * out all queuing and blocking mechanics. Subclasses can maintain
     * other state fields, but only the atomically updated {@code int}
     * value manipulated using methods {@link #getState}, {@link
     * #setState} and {@link #compareAndSetState} is tracked with respect
     * to synchronization.
     * ...
     * @since 1.5
     * @author Doug Lea
     */
    
    public abstract class AbstractQueuedSynchronizer
        extends AbstractOwnableSynchronizer
        implements java.io.Serializable

    FIFO等待队列说明:

    共享资源被占用,就需要一定的阻塞等待唤醒机制来保证锁分配。这个机制主要用的是CLH队列的变体实现,将暂时获取不到锁的线程加入到队列中,这个队列就是AQS的抽线表现。它将请求共享资源的线程封装成队列的节点(Node),通过CAS、自选以及LockSupport.park()的方式,维护state变量状态,达到同步控制。

       /**
         * Wait queue node class.
         *
         * <p>The wait queue is a variant of a "CLH" (Craig, Landin, and
         * Hagersten) lock queue. CLH locks are normally used for
         * spinlocks.  We instead use them for blocking synchronizers, but
         * use the same basic tactic of holding some of the control
         * information about a thread in the predecessor of its node.  A
         * "status" field in each node keeps track of whether a thread
         * should block.  A node is signalled when its predecessor
         * releases.  Each node of the queue otherwise serves as a
         * specific-notification-style monitor holding a single waiting
         * thread. The status field does NOT control whether threads are
         * granted locks etc though.  A thread may try to acquire if it is
         * first in the queue. But being first does not guarantee success;
         * it only gives the right to contend.  So the currently released
         * contender thread may need to rewait.
         *
         * <p>To enqueue into a CLH lock, you atomically splice it in as new
         * tail. To dequeue, you just set the head field.
         * <pre>
         *      +------+  prev +-----+       +-----+
         * head |      | <---- |     | <---- |     |  tail
         *      +------+       +-----+       +-----+
         * </pre>
         * on the design of this class.
         */
        static final class Node

    内部类Node内部属性说明:

    Node = waitStatus + 前后指针指向

    static final class Node {
            /** 共享  */
            static final Node SHARED = new Node();
            /** 独占 */
            static final Node EXCLUSIVE = null;
            /** 线程被取消了  */
            static final int CANCELLED =  1;
            /** 后继线程需要唤醒 */
            static final int SIGNAL    = -1;
            /** 等待condition唤醒 */
            static final int CONDITION = -2;
            /** 共享式同步状态获取将会无条件传播下去 */
            static final int PROPAGATE = -3;
            /**
             * Status field, taking on only the values:
             *   SIGNAL:     The successor of this node is (or will soon be)
             *               blocked (via park), so the current node must
             *               unpark its successor when it releases or
             *               cancels. To avoid races, acquire methods must
             *               first indicate they need a signal,
             *               then retry the atomic acquire, and then,
             *               on failure, block.
             *   CANCELLED:  This node is cancelled due to timeout or interrupt.
             *               Nodes never leave this state. In particular,
             *               a thread with cancelled node never again blocks.
             *   CONDITION:  This node is currently on a condition queue.
             *               It will not be used as a sync queue node
             *               until transferred, at which time the status
             *               will be set to 0. (Use of this value here has
             *               nothing to do with the other uses of the
             *               field, but simplifies mechanics.)
             *   PROPAGATE:  A releaseShared should be propagated to other
             *               nodes. This is set (for head node only) in
             *               doReleaseShared to ensure propagation
             *               continues, even if other operations have
             *               since intervened.
             *   0:          None of the above
             *
             * The values are arranged numerically to simplify use.
             * Non-negative values mean that a node doesn't need to
             * signal. So, most code doesn't need to check for particular
             * values, just for sign.
             *
             * The field is initialized to 0 for normal sync nodes, and
             * CONDITION for condition nodes.  It is modified using CAS
             * (or when possible, unconditional volatile writes).
             */
            volatile int waitStatus;
    
            /** 前置节点 */
            volatile Node prev;
    
            /** 后继节点 */
            volatile Node next;
    
            volatile Thread thread;
    
            Node nextWaiter;
    
            final boolean isShared() {
                return nextWaiter == SHARED;
            }
     
            final Node predecessor() throws NullPointerException {
                Node p = prev;
                if (p == null)
                    throw new NullPointerException();
                else
                    return p;
            }
    
            Node() {    // Used to establish initial head or SHARED marker
            }
    
            Node(Thread thread, Node mode) {     // Used by addWaiter
                this.nextWaiter = mode;
                this.thread = thread;
            }
    
            Node(Thread thread, int waitStatus) { // Used by Condition
                this.waitStatus = waitStatus;
                this.thread = thread;
            }
        }

    二、以ReentrantLock作为突破口,其核心内部类Sync继承AQS。

    public class ReentrantLock implements Lock, java.io.Serializable {
        private static final long serialVersionUID = 7373984872572414699L;
    
        private final Sync sync;
    
        /**
         * Base of synchronization control for this lock. Subclassed
         * into fair and nonfair versions below. Uses AQS state to
         * represent the number of holds on the lock.
         */
        abstract static class Sync extends AbstractQueuedSynchronizer {
            private static final long serialVersionUID = -5179523762034025860L;

    接下来,以实际最常用的lock()方法分析走起:

    对于AQS底层源码分析主要分析如下几个:

    第一类:① lock() ② acquire() ③ tryAcquire(arg) ④ addWaiter(Node.EXCLUSIVE) ⑤ acquireQueued(addWaiter(Node.EXCLUSIVE),arg)

    第二类:①unlock()

    目前三个线程排队等待处理同一个资源:

    ThreadA,ThreadB,ThreadC。 

    ① lock():线程A:lock.lock():线程Aj进入if,并且把值state从0设置成1(初始化时,在AQS类中state值为0),并且把当前持有资源的线程设置成线程A。

            final void lock() {
                if (compareAndSetState(0, 1))
                    setExclusiveOwnerThread(Thread.currentThread());
                else
                    acquire(1);
            }

    线程B,进来是。只能走else(期望state是0,当时以及被线程A设置成1),

        protected final boolean compareAndSetState(int expect, int update) {
            // See below for intrinsics setup to support this
            return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
        }

    分析② acquire()

        public final void acquire(int arg) {
            if (!tryAcquire(arg) &&
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
                selfInterrupt();
        }

    分析③ tryAcquire(arg),AQS方法抛异常,强制子类实现其方法,此处走非公平锁:NonFairSync in ReetrantLock

            protected final boolean tryAcquire(int acquires) {
                return nonfairTryAcquire(acquires);
            }

    继续进入方法:nonfairTryAcquire(acquires):线程B进入,设置当前线程为B,c=getState(),c=1(被线程A改了),else if (线程B不等于获取资源的线程),返回false。

            /**
             * Performs non-fair tryLock.  tryAcquire is implemented in
             * subclasses, but both need nonfair try for trylock method.
             */
            final boolean nonfairTryAcquire(int acquires) {
                final Thread current = Thread.currentThread();
                int c = getState();
                if (c == 0) {
                    if (compareAndSetState(0, acquires)) {
                        setExclusiveOwnerThread(current);
                        return true;
                    }
                }
                else if (current == getExclusiveOwnerThread()) {
                    int nextc = c + acquires;
                    if (nextc < 0) // overflow
                        throw new Error("Maximum lock count exceeded");
                    setState(nextc);
                    return true;
                }
                return false;
            }

    至此,acquire方法内,if前半段true,继续走后半段:acquireQueued(addWaiter(Node.EXCLUSIVE), arg),继续往里走方法 ④addWaiter(Node.EXCLUSIVE)

        /**
         * Creates and enqueues node for current thread and given mode.
         *
         * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
         * @return the new node
         */
        private Node addWaiter(Node mode) {
            Node node = new Node(Thread.currentThread(), mode);
            // Try the fast path of enq; backup to full enq on failure
            Node pred = tail;
            if (pred != null) {
                node.prev = pred;
                if (compareAndSetTail(pred, node)) {
                    pred.next = node;
                    return node;
                }
            }
            enq(node);
            return node;
        }

     此时B线程进入,new Node。此时tail==null(刚开始,没有队列),if不进,走下面enq(node):

        /**
         * Inserts node into queue, initializing if necessary. See picture above.
         * @param node the node to insert
         * @return node's predecessor
         */
        private Node enq(final Node node) {
            for (;;) {
                Node t = tail;
                if (t == null) { // Must initialize
                    if (compareAndSetHead(new Node()))
                        tail = head;
                } else {
                    node.prev = t;
                    if (compareAndSetTail(t, node)) {
                        t.next = node;
                        return t;
                    }
                }
            }
        }

    上述t==null,初始化节点,进入if,走方法compareAndSetHead(new Node()),创建空节点作为头节点。

        /**
         * CAS head field. Used only by enq.
         */
        private final boolean compareAndSetHead(Node update) {
            return unsafe.compareAndSwapObject(this, headOffset, null, update);
        }

    for(;;)第一遍走完:

    for(;;)第二遍,走else,把线程B所在Node节点,入队,设置Node前后指针,最后return退出 。

    如果线程C也进来抢占资源,在前面方法;addWaiter(Node mode)中,走if内,直接设置了线程C所属的Node节点,并相应的把前后指针设置好。

    内层方法addWaiter(Node.EXCLUSIVE)分析完,分析外层方法 ⑤acquireQueued(addWaiter(Node.EXCLUSIVE), arg):

        /**
         * Acquires in exclusive uninterruptible mode for thread already in
         * queue. Used by condition wait methods as well as acquire.
         *
         * @param node the node
         * @param arg the acquire argument
         * @return {@code true} if interrupted while waiting
         */
        final boolean acquireQueued(final Node node, int arg) {
            boolean failed = true;
            try {
                boolean interrupted = false;
                for (;;) {
                    final Node p = node.predecessor();
                    if (p == head && tryAcquire(arg)) {
                        setHead(node);
                        p.next = null; // help GC
                        failed = false;
                        return interrupted;
                    }
                    if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                        interrupted = true;
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }

    线程B走进for(;;):final Node p = node.predecessor();此时线程B,进入获取了了哨兵节点,if()方法中,p==hean是真,线程B执行tryAcquire(arg)继续试图抢一下资源。

            final Node predecessor() throws NullPointerException {
                Node p = prev;
                if (p == null)
                    throw new NullPointerException();
                else
                    return p;
            }

    由于抢不到,继续往下走if(shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt()),走前半段,哨兵节点ws一开始是0,哨兵节点走进else内,compareAndSetWaitStatus(pred, ws, Node.SIGNAL);设置ws =-1,return false;继续回到上面自选for(;;);第二次,进来,此时ws=-1,直接走if(ws==Node.SIGNAL),那么开始走后半段:parkAndCheckInterrupt()

        /**
         * Checks and updates status for a node that failed to acquire.
         * Returns true if thread should block. This is the main signal
         * control in all acquire loops.  Requires that pred == node.prev.
         *
         * @param pred node's predecessor holding status
         * @param node the node
         * @return {@code true} if thread should block
         */
        private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
            int ws = pred.waitStatus;
            if (ws == Node.SIGNAL)
                /*
                 * This node has already set status asking a release
                 * to signal it, so it can safely park.
                 */
                return true;
            if (ws > 0) {
                /*
                 * Predecessor was cancelled. Skip over predecessors and
                 * indicate retry.
                 */
                do {
                    node.prev = pred = pred.prev;
                } while (pred.waitStatus > 0);
                pred.next = node;
            } else {
                /*
                 * waitStatus must be 0 or PROPAGATE.  Indicate that we
                 * need a signal, but don't park yet.  Caller will need to
                 * retry to make sure it cannot acquire before parking.
                 */
                compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
            }
            return false;
        }

    进入方法:parkAndCheckInterrupt(),此时this是节点B,B终于被挂起,即阻塞了。线程C对应的节点C,同样走到这里被阻塞。

        /**
         * Convenience method to park and then check if interrupted
         *
         * @return {@code true} if interrupted
         */
        private final boolean parkAndCheckInterrupt() {
            LockSupport.park(this);
            return Thread.interrupted();
        }

    综上,第一类lock()方法已经分析完毕。

    接下里来分析第二类:unlock()方法:

        public void unlock() {
            sync.release(1);
        }
        public final boolean release(int arg) {
            if (tryRelease(arg)) {
                Node h = head;
                if (h != null && h.waitStatus != 0)
                    unparkSuccessor(h);
                return true;
            }
            return false;
        }
            protected final boolean tryRelease(int releases) {
                int c = getState() - releases;
                if (Thread.currentThread() != getExclusiveOwnerThread())
                    throw new IllegalMonitorStateException();
                boolean free = false;
                if (c == 0) {
                    free = true;
                    setExclusiveOwnerThread(null);
                }
                setState(c);
                return free;
            }

    上述线程A资源用完,释放资源,c = 1-1(入参1)。free =true;设置当前拥有资源线程为null。返回true。

    回到上面,继续走:Node h = head; if (h != null && h.waitStatus != 0):头节点是哨兵节点,进入方法unparkSuccessor(h);

        /**
         * Wakes up node's successor, if one exists.
         *
         * @param node the node
         */
        private void unparkSuccessor(Node node) {
            /*
             * If status is negative (i.e., possibly needing signal) try
             * to clear in anticipation of signalling.  It is OK if this
             * fails or if status is changed by waiting thread.
             */
            int ws = node.waitStatus;
            if (ws < 0)
                compareAndSetWaitStatus(node, ws, 0);
    
            /*
             * Thread to unpark is held in successor, which is normally
             * just the next node.  But if cancelled or apparently null,
             * traverse backwards from tail to find the actual
             * non-cancelled successor.
             */
            Node s = node.next;
            if (s == null || s.waitStatus > 0) {
                s = null;
                for (Node t = tail; t != null && t != node; t = t.prev)
                    if (t.waitStatus <= 0)
                        s = t;
            }
            if (s != null)
                LockSupport.unpark(s.thread);
        }

    第一个if进去(之前哨兵节点ws被设置了-1),进去之后被设置了0。第一个if不进,s==节点B。进入第三个if,此处线程B被unpark,唤醒。

    关键点:此处回到⑤acquireQueued(addWaiter(Node.EXCLUSIVE), arg):

    for(;;)在这里自旋呢:tryAcquire(arg)进入后。最总返回真(由于c = getState()此时为0,进入if,返回true)。

        final boolean acquireQueued(final Node node, int arg) {
            boolean failed = true;
            try {
                boolean interrupted = false;
                for (;;) {
                    final Node p = node.predecessor();
                    if (p == head && tryAcquire(arg)) {
                        setHead(node);
                        p.next = null; // help GC
                        failed = false;
                        return interrupted;
                    }
                    if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                        interrupted = true;
                }
            } finally {
                if (failed)
                    cancelAcquire(node);
            }
        }

    进入if后,执行三个方法;

    setHead(node);设置队列中B节点线程为null,把头设置成节点B,把节点B前指针设置null。
    p.next = null; // help GC 把原哨兵节点出队,将被下次GC回收。至此,新的节点B成为了新哨兵节点。
    failed = false;

  • 相关阅读:
    poj3167
    poj2752 bzoj3670
    poj2886
    poj3294
    [luoguP2564][SCOI2009]生日礼物(队列)
    [luoguP1866]滑动窗口(单调队列)
    [luoguP1198][JSOI2008] 最大数(线段树 || 单调栈)
    [HDU4348]To the moon(主席树)
    [luoguP1168]中位数(主席树+离散化)
    [HDU4417]Super Mario(主席树+离散化)
  • 原文地址:https://www.cnblogs.com/gzhcsu/p/14209378.html
Copyright © 2011-2022 走看看