zoukankan      html  css  js  c++  java
  • 比特位计数 动态规划

    1. 题目描述

    给定一个非负整数num。对于0 ≤ i ≤ num范围中的每个数字i,计算其二进制数中的1的数目并将它们作为数组返回。

    示例 1:

    输入: 2
    输出: [0,1,1]
    

    示例 2:

    输入: 5
    输出: [0,1,1,2,1,2]
    

    2. 题解

    2.1 汉明权重

    相关阅读:汉明权重

    public int[] countBits(int num) {
    	int[] ans = new int[num + 1];
    	for (int i = 0; i <= num; ++i)
    		ans[i] = popcount(i);
    	return ans;
    }
    private int popcount(int x) {
    	int count;
    	for (count = 0; x != 0; ++count)
    	  x &= x - 1; //zeroing out the least significant nonzero bit
    	return count;
    }
    

    x &= x - 1将最低有效非零位清零,每次执行此操作,count1,直到所有非零位都被清零为止。
    返回的count的值就是x的二进制形式的1的数目。

    2.2 动态规划

    2.2.1 最高有效位

    public int[] countBits(int num) {
    	int[] ans = new int[num + 1];
    	int i = 0, b = 1;
    	// [0, b) is calculated
    	while (b <= num) {
    		// generate [b, 2b) or [b, num) from [0, b)
    		while(i < b && i + b <= num){
    			ans[i + b] = ans[i] + 1;
    			++i;
    		}
    		i = 0;   // reset i
    		b <<= 1; // b = 2b
    	}
    	return ans;
    }
    

    [P(x+b)=P(x)+1, b = 2^m>x ]

    [P(0) = 0 ]

    [P(1) = P(0+2^0)=P(0)+1 = 1 ]

    [P(2) = P(0+2^1)=P(0)+1 = 1 ]

    [P(3) = P(1+2^1)=P(1)+1 = 2 ]

    [P(4) = P(0+2^2)=P(0)+1 = 1 ]

    [P(5) = P(1+2^2)=P(1)+1 = 2 ]

    [P(6) = P(2+2^2)=P(2)+1 = 2 ]

    [P(7) = P(3+2^2)=P(3)+1 = 3 ]

    [P(8) = P(0+2^3)=P(0)+1 = 1 ]

    注意到248刚好是2的整数次方(即2的一次方、2的二次方和2的三次方等等)。
    4为例,P(4) = P(0+2^2)P(5) = P(1+2^2)P(6) = P(2+2^2)P(7) = P(3+2^2)。接下来,由于4不小于2^2(b = 2^m > x),所以b乘以2,于是P(8) = P(0+2^3)

    2.2.2 最低有效位

    public int[] countBits(int num) {
      int[] ans = new int[num + 1];
      for (int i = 1; i <= num; ++i)
    	ans[i] = ans[i >> 1] + (i & 1); // x / 2 is x >> 1 and x % 2 is x & 1
      return ans;
    }
    

    [P(x)=P(x/2)+(xquad modquad2) ]

    [P(0) = 0 ]

    [P(1) = P(0)+(1quad mod quad2) = 0 + 1 = 1 ]

    [P(2) = P(1)+(2quad mod quad2) = 1 + 0 = 1 ]

    [P(3) = P(1)+(3quad mod quad2) = 1 + 1 = 2 ]

    [P(4) = P(2)+(4quad mod quad2) = 1 + 0 = 1 ]

    [P(5) = P(2)+(5quad mod quad2) = 1 + 1 = 2 ]

    [P(6) = P(3)+(6quad mod quad2) = 2 + 0 = 2 ]

    [P(7) = P(3)+(7quad mod quad2) = 2 + 1 = 3 ]

    [P(8) = P(4)+(8quad mod quad2) = 1 + 0 = 1 ]

    01向左移动一位(实际上相当于乘以2),得到10(即2),说明121的数目都为1
    101得到11(即3),所以P(3)=P(1)+1
    注意到移位操作不会改变1的数目,但是1的数目会随着加1操作而增加一个。
    因此,2的整数次方的1的数目都为1

    2.2.3 最后设置位

    public int[] countBits(int num) {
      int[] ans = new int[num + 1];
      for (int i = 1; i <= num; ++i)
    	ans[i] = ans[i & (i - 1)] + 1;
      return ans;
    }
    

    由于x&(x-1)会将x的最低有效非零位清零,这样会少了一个1,所以有P(x)=P(x&(x-1))+1

    P(0) = 0
    P(1) = P(1&(1-1))+1 = P(0) + 1 = 0 + 1 = 1
    P(2) = P(2&(2-1))+1 = P(0) + 1 = 0 + 1 = 1
    P(3) = P(3&(3-1))+1 = P(2) + 1 = 1 + 1 = 2
    P(4) = P(4&(4-1))+1 = P(0) + 1 = 0 + 1 = 1
    P(5) = P(5&(5-1))+1 = P(4) + 1 = 1 + 1 = 2
    P(6) = P(6&(6-1))+1 = P(4) + 1 = 1 + 1 = 2
    P(7) = P(7&(7-1))+1 = P(6) + 1 = 2 + 1 = 3
    P(8) = P(8&(8-1))+1 = P(0) + 1 = 0 + 1 = 1
    

    参考:

  • 相关阅读:
    数据窗口的缓冲区
    RowsMove()
    update
    defparameter defconstant
    1+ 1
    原则
    incf decf
    eql equal
    上司找谈话
    判断回文的函数palindrome?
  • 原文地址:https://www.cnblogs.com/gzhjj/p/14139109.html
Copyright © 2011-2022 走看看