zoukankan      html  css  js  c++  java
  • Kth Largest Element in a Stream

    Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.

    Your KthLargest class will have a constructor which accepts an integer k and an integer array nums, which contains initial elements from the stream. For each call to the method KthLargest.add, return the element representing the kth largest element in the stream.

    Example:

    int k = 3;
    int[] arr = [4,5,8,2];
    KthLargest kthLargest = new KthLargest(3, arr);
    kthLargest.add(3);   // returns 4
    kthLargest.add(5);   // returns 5
    kthLargest.add(10);  // returns 5
    kthLargest.add(9);   // returns 8
    kthLargest.add(4);   // returns 8
    

    Note: 
    You may assume that nums' length ≥ k-1 and k ≥ 1.

    Approach #1: C++.[priority_queue]

    class KthLargest {
    public:
        KthLargest(int k, vector<int> nums) {
            size = k;
            for (int i = 0; i < nums.size(); ++i) {
                pq.push(nums[i]);
                if (pq.size() > k) pq.pop();
            }
        }
        
        int add(int val) {
            pq.push(val);
            if (pq.size() > size) pq.pop();
            return pq.top();
        }
        
    private:
        priority_queue<int, vector<int>, greater<int>> pq;
        int size;
    };
    
    /**
     * Your KthLargest object will be instantiated and called as such:
     * KthLargest obj = new KthLargest(k, nums);
     * int param_1 = obj.add(val);
     */
    

      

    Approach #2: Java.[BST]

    class KthLargest {
        TreeNode root;
        int k;
    
        public KthLargest(int k, int[] nums) {
            this.k = k;
            for (int num : nums) root = add(root, num);
        }
        
        public int add(int val) {
            root = add(root, val);
            return findKthLargest();
        }
        
        private TreeNode add(TreeNode root, int val) {
            if (root == null) return new TreeNode(val);
            root.count++;
            if (val < root.val) root.left = add(root.left, val);
            else root.right = add(root.right, val);
            return root;
        }
        
        public int findKthLargest() {
            int count = k;
            TreeNode walker = root;
            
            while (count > 0) {
                int pos = 1 + (walker.right != null ? walker.right.count : 0);
                if (count == pos) break;
                if (count > pos) {
                    count -= pos;
                    walker = walker.left;
                } else if (count < pos) 
                    walker = walker.right;
            }
            return walker.val;
        }
        
        class TreeNode {
            int val, count = 1;
            TreeNode left, right;
            TreeNode(int v) { val = v; }
        }
    }
    
    /**
     * Your KthLargest object will be instantiated and called as such:
     * KthLargest obj = new KthLargest(k, nums);
     * int param_1 = obj.add(val);
     */
    

      

    Approach #3: Python.[priority_queue].

    class KthLargest(object):
    
        def __init__(self, k, nums):
            """
            :type k: int
            :type nums: List[int]
            """
            self.pool = nums
            self.k = k
            heapq.heapify(self.pool)
            while len(self.pool) > k:
                heapq.heappop(self.pool)
            
    
        def add(self, val):
            """
            :type val: int
            :rtype: int
            """
            if len(self.pool) < self.k:
                heapq.heapq.push(self.pool, val)
            elif val > self.pool[0]:
                heapq.heapreplace(self.pool, val)
            return self.pool[0]
            
    
    
    # Your KthLargest object will be instantiated and called as such:
    # obj = KthLargest(k, nums)
    # param_1 = obj.add(val)
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    174. Dungeon Game
    240. Search a 2D Matrix II
    300. Longest Increasing Subsequence
    test markdown style
    多源多汇费用流——poj2516
    费用流消圈算法(构造残量网络)
    费用流模板(带权二分图匹配)——hdu1533
    最大流模板——进阶指南整理
    最大流任务调度+离散化——hdu2883
    最大流拆点——hdu2732,poj3436
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10013821.html
Copyright © 2011-2022 走看看