Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the values of any two different nodes in the tree.
Example :
Input: root = [4,2,6,1,3,null,null]
Output: 1
Explanation:
Note that root is a TreeNode object, not an array.
The given tree [4,2,6,1,3,null,null] is represented by the following diagram:
4
/
2 6
/
1 3
while the minimum difference in this tree is 1, it occurs between node 1 and node 2, also between node 3 and node 2.
Note:
- The size of the BST will be between 2 and
100. - The BST is always valid, each node's value is an integer, and each node's value is different.
Approach #1: C++.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int minDiffInBST(TreeNode* root) {
solve(root);
sort(nodes.begin(), nodes.end());
int minNum = INT_MAX;
for (int i = 1; i < nodes.size(); ++i) {
minNum = min(minNum, nodes[i]-nodes[i-1]);
}
return minNum;
}
void solve(TreeNode* root) {
if (root->left != NULL)
minDiffInBST(root->left);
nodes.push_back(root->val);
if (root->right != NULL)
minDiffInBST(root->right);
}
private:
vector<int> nodes;
};
Approach #2: Java. [Inorder travel]
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
Integer minDiff = Integer.MAX_VALUE, pre = null;
public int minDiffInBST(TreeNode root) {
if (root.left != null) minDiffInBST(root.left);
if (pre != null) minDiff = Math.min(minDiff, root.val-pre);
pre = root.val;
if (root.right != null) minDiffInBST(root.right);
return minDiff;
}
}
Approach #3: Python.
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
minDiff = float('inf')
pre = -float('inf')
def minDiffInBST(self, root):
"""
:type root: TreeNode
:rtype: int
"""
if root.left != None:
self.minDiffInBST(root.left)
self.minDiff = min(self.minDiff, root.val-self.pre)
self.pre = root.val
if root.right != None:
self.minDiffInBST(root.right)
return self.minDiff;
Notes: