Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n.
Example:
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:
1 3 3 2 1
/ / /
3 2 1 1 3 2
/ /
2 1 2 3
Approach #1: C++.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
if (n == 0) {
return vector<TreeNode*>();
} else {
return generate_trees(1, n);
}
}
vector<TreeNode*> generate_trees(int start, int end) {
vector<TreeNode*> all_trees;
if (start > end) {
all_trees.push_back(NULL);
return all_trees;
}
for (int i = start; i <= end; ++i) {
vector<TreeNode*> left_trees = generate_trees(start, i - 1);
vector<TreeNode*> right_trees = generate_trees(i + 1, end);
for (TreeNode* l : left_trees) {
for (TreeNode* r : right_trees) {
TreeNode* curr_tree = new TreeNode(i);
curr_tree->left = l;
curr_tree->right = r;
all_trees.push_back(curr_tree);
}
}
}
return all_trees;
}
};