zoukankan      html  css  js  c++  java
  • 329. Longest Increasing Path in a Matrix

    Given an integer matrix, find the length of the longest increasing path.

    From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

    Example 1:

    Input: nums = 
    [
      [9,9,4],
      [6,6,8],
      [2,1,1]
    ] 
    Output: 4 
    Explanation: The longest increasing path is [1, 2, 6, 9].
    

    Example 2:

    Input: nums = 
    [
      [3,4,5],
      [3,2,6],
      [2,2,1]
    ] 
    Output: 4 
    Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

    Approach #1 Java: [dfs + dp]

    class Solution {
        public static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
        public int longestIncreasingPath(int[][] matrix) {
            if (matrix.length == 0) return 0;
            int m = matrix.length, n = matrix[0].length;
            int[][] cache = new int[m][n];
            int max = 1;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    int len = dfs(matrix, i, j, m, n, cache);
                    max = Math.max(max, len);
                }
            }
            return max;
        }
        
        public int dfs(int[][] matrix, int i, int j, int m, int n, int[][] cache) {
            if (cache[i][j] != 0) return cache[i][j];
            int max = 1;
            for (int[] dir : dirs) {
                int x = i + dir[0], y = j + dir[1];
                if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j]) continue;
                int len = 1 + dfs(matrix, x, y, m, n, cache);
                max = Math.max(max, len);
            }
            cache[i][j] = max;
            return max;
        }
    }
    

      

    Approach #2: C++.

    class Solution {
    public:
        int longestIncreasingPath(vector<vector<int>>& matrix) {
            if (matrix.size() == 0) return 0;
            int row = matrix.size();
            int col = matrix[0].size();
            vector<vector<int>> memory(row, vector<int>(col, 0));
            
            std::function<int(int, int)> dfs = [&] (int x, int y) {
                if (memory[x][y]) return memory[x][y];
                for (auto &dir : dirs) {
                    int xx = x + dir.first;
                    int yy = y + dir.second;
                    if (xx < 0 || xx >= row || yy < 0 || yy >= col || matrix[x][y] >= matrix[xx][yy]) continue;
                    memory[x][y] = std::max(memory[x][y], dfs(xx, yy));
                }
                return ++memory[x][y];
            };
            
            int ans = 0;
            for (int i = 0; i < row; ++i) {
                for (int j = 0; j < col; ++j) {
                    ans = max(ans, dfs(i, j));
                }
            }
            return ans;
        }
    private:
        vector<pair<int, int>> dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    };
    

      

    Approach #3: Python.

    class Solution(object):
        def longestIncreasingPath(self, matrix):
            """
            :type matrix: List[List[int]]
            :rtype: int
            """
            def dfs(i, j):
                if not dp[i][j]:
                    val = matrix[i][j]
                    dp[i][j] = 1 + max(
                        dfs(i-1, j) if i and val > matrix[i-1][j] else 0,
                        dfs(i+1, j) if i < M-1 and val > matrix[i+1][j] else 0,
                        dfs(i, j-1) if j and val > matrix[i][j-1] else 0,
                        dfs(i, j+1) if j < N-1 and val > matrix[i][j+1] else 0
                    )
                return dp[i][j]
                
            if not matrix or not matrix[0]: return 0
            M, N = len(matrix), len(matrix[0])
            dp = [[0] * N for i in range(M)]
            return max(dfs(x, y) for x in range(M) for y in range(N))
            
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    机器学习书籍推荐
    25个机器学习面试题,期待你来解答
    观点 | 如何优雅地从四个方面加深对深度学习的理解
    Azure Public IP DNS域名
    SSH不允许Root登陆的方法
    MySQL on Azure高可用性设计 DRBD
    Linux ssh 不需要输入密码的方法
    MySQL on Azure高可用性设计 DRBD
    Express Route的配置
    Azure PIP (Instance Level Public IP)
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10101569.html
Copyright © 2011-2022 走看看