zoukankan      html  css  js  c++  java
  • 417. Pacific Atlantic Water Flow

    Given an m x n matrix of non-negative integers representing the height of each unit cell in a continent, the "Pacific ocean" touches the left and top edges of the matrix and the "Atlantic ocean" touches the right and bottom edges.

    Water can only flow in four directions (up, down, left, or right) from a cell to another one with height equal or lower.

    Find the list of grid coordinates where water can flow to both the Pacific and Atlantic ocean.

    Note:

    1. The order of returned grid coordinates does not matter.
    2. Both m and n are less than 150.

    Example:

    Given the following 5x5 matrix:
    
      Pacific ~   ~   ~   ~   ~ 
           ~  1   2   2   3  (5) *
           ~  3   2   3  (4) (4) *
           ~  2   4  (5)  3   1  *
           ~ (6) (7)  1   4   5  *
           ~ (5)  1   1   2   4  *
              *   *   *   *   * Atlantic
    
    Return:
    
    [[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).

    Approach #1: C++. [DFS]

    class Solution {
    public:
        vector<pair<int, int>> pacificAtlantic(vector<vector<int>>& matrix) {
            if (matrix.size() == 0) return ans;
            
            int m = matrix.size();
            int n = matrix[0].size();
            
            visited.resize(m, vector<int>(n, 0));
            
            for (int i = 0; i < m; ++i) {
                dfs(i, 0, matrix, INT_MIN, 1);
                dfs(i, n-1, matrix, INT_MIN, 2);
            }
            
            for (int j = 0; j < n; ++j) {
                dfs(0, j, matrix, INT_MIN, 1);
                dfs(m-1, j, matrix, INT_MIN, 2);
            }
            
            return ans;
        }
        
    private:
        vector<vector<int>> visited;
        vector<pair<int, int>> ans;
        
        void dfs(int i, int j, vector<vector<int>>& matrix, int pre, int lable) {
            if (i < 0 || i >= matrix.size() || j < 0 || j >= matrix[0].size() || 
                matrix[i][j] < pre || visited[i][j] == 3 || visited[i][j] == lable) 
                return ;
            
            visited[i][j] += lable;
            
            if (visited[i][j] == 3) ans.push_back({i, j});
            
            dfs(i+1, j, matrix, matrix[i][j], lable);
            dfs(i-1, j, matrix, matrix[i][j], lable);
            dfs(i, j+1, matrix, matrix[i][j], lable);
            dfs(i, j-1, matrix, matrix[i][j], lable);
        }
    };
    
    

      

    Analysis:

    In this solution we travel start at the edges, from difference edges with difference lable represent the difference ocean. if visited[i][j]'s value equal to 3, this illustrate that at this point the water can flow both the Pacific and Atlantic ocean.

    Approach #2: Java. [BFS]

    class Solution {
        int[][] dirs = new int[][] {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
        public List<int[]> pacificAtlantic(int[][] matrix) {
            List<int[]> res = new LinkedList<>();
            if (matrix == null || matrix.length == 0 || matrix[0].length == 0) 
                return res;
            
            int n = matrix.size;
            int m = matrix[0].size;
            
            boolean[][] pacific = new boolean[n][m];
            boolean[][] atlantic = new boolean[n][m];
            Queue<int[]> pQueue = new LinkedList<>();
            Queue<int[]> aQueue = new LinkedList<>();
            
            for (int i = 0; i < n; ++i) {
                pQueue.offer(new int[]{i, 0});
                aQueue.offer(new int[]{i, m-1});
                pacific[i][0] = true;
                atlantic[i][m-1] = true;
            }
            
            for (int i = 0; i < m; ++i) {
                pQueue.offer(new int[]{0, i});
                aQueue.offer(new int[]{n-1, i});
                pacific[0][i] = true;
                atlantic[n-1][i] = true;
            }
            
            bfs(matrix, pQueue, pacific);
            bfs(matrix, aQueue, atlantic);
            
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j < m; ++j) {
                    if (pacific[i][j] && atlantic[i][j]) {
                        res.add(new int[]{i, j});
                    }
                }
            }
            
            return res;
        }
        
        public void bfs(int[][] matrix, Queue<int[]> queue, boolean[][] visited) {
            int n = matrix.length;
            int m = matrix[0].length;
            
            while (!queue.isEmpty()) {
                int[] cur = queue.poll();
                for (int[] d : dirs) {
                    int x = cur[0] + d[0];
                    int y = cur[1] + d[1];
                    
                    if (x < 0 || x > n-1 || y < 0 || y > m-1 || visited[x][y] || matrix[x][y] < matrix[cur[0]][cur[1]])
                        continue;
                    
                    visited[x][y] = true;
                    queue.offer(new int[]{x, y});
                }
            }
        }
    }
    

      

    Approach #3: Python. 

    class Solution(object):
        def pacificAtlantic(self, matrix):
            """
            :type matrix: List[List[int]]
            :rtype: List[List[int]]
            """
            if not matrix: return []
            
            self.directions = [(1, 0), (-1, 0), (0, 1), (0, -1)]
            
            m = len(matrix)
            n = len(matrix[0])
            
            p_visited = [[False for _ in range(n)] for _ in range(m)]
            a_visited = [[False for _ in range(n)] for _ in range(m)]
            
            result = []
            
            for i in range(m):
                self.dfs(matrix, i, 0, p_visited, m, n)
                self.dfs(matrix, i, n-1, a_visited, m, n)
                
            for i in range(n):
                self.dfs(matrix, 0, i, p_visited, m, n)
                self.dfs(matrix, m-1, i, a_visited, m, n)
                
            for i in range(m):
                for j in range(n):
                    if p_visited[i][j] and a_visited[i][j]:
                        result.append([i, j])
                        
            return result
        
        def dfs(self, matrix, i, j, visited, m, n):
            visited[i][j] = True
            
            for dir in self.directions:
                x, y = i + dir[0], j + dir[1]
                if x < 0 or x >= m or y < 0 or y >= n or visited[x][y] or matrix[x][y] < matrix[i][j]:
                    continue
                self.dfs(matrix, x, y, visited, m, n)
                
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Step by step Dynamics CRM 2013安装
    SQL Server 2012 Managed Service Account
    Step by step SQL Server 2012的安装
    Step by step 活动目录中添加一个子域
    Step by step 如何创建一个新森林
    向活动目录中添加一个子域
    活动目录的信任关系
    RAID 概述
    DNS 正向查找与反向查找
    Microsoft Dynamics CRM 2013 and 2011 Update Rollups and Service Packs
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10125141.html
Copyright © 2011-2022 走看看